Skip to main content
Log in

Numerical study of the effects of heterogeneous recombination and heterogeneous initiation on flame propagation in hydrogen-air mixtures at atmospheric pressure

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two-dimensional numerical simulation of th e effect of heterogeneous recombination ad heterogeneous initiation reactions on flame propagation in hydrogen-air mixtures has been carried out for different types of boundary conditions and different fuel-to-oxidizer ratios at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrae, J. and Bjornbom, P., Wall Effects of Laminar Hydrogen Flames Over Platinum and Inert Surfaces, AIChEJ., 2000, vol. 46, p. 1454.

    Article  CAS  Google Scholar 

  2. Andrae, J., Bjornbom, P., and Edsberg, L., Numerical Studies of Wall Effects of Laminar Methane Flames, Proc.First Biennial Meeting of the Scandinavian-Nordic Section of the Combustion Institute, Gothenburg, Sweden, 2001, p. 199.

  3. Aghalayam, P., Bui, P.-A., and Vlachos, D.G., The Role of Radical Wall Quenching in Flame Stability and Wall Heat Flux: Hydrogen-Air Mixtures, Combust. Theory Model., 1998, vol. 2, p. 515.

    Article  CAS  Google Scholar 

  4. Azatyan, V.V., Bolod’yan, I.A., Navtsenya, V.Yu., and Shebeko, Yu.N., The Predominant Role of the Competition between the Chain-Branching and Chain-Terminating Reactions in the Formation of Concentration Limits of Flame Propagation, Zh. Fiz. Khim., 2002, vol. 76, no. 5, p. 775 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 76, no. 5, p. 677].

    CAS  Google Scholar 

  5. Azatyan, V.V., Aleksandrov, E.N., and Troshin, A.F., Chain Initiation Rate in Hydrogen and Deuterium Combustion with Oxygen, Kinet. Katal., 1975, vol. 16, p. 306.

    CAS  Google Scholar 

  6. Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Rossi, M.J., and Troe, J., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VI. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys.Chem. Ref. Data, 1997, vol. 26, p. 1329.

    Article  CAS  Google Scholar 

  7. Baulch, D.L., Cobos, C.J., Cox, R.A., et al., Evaluated Kinetic Data for Combustion Modeling, J. Phys. Chem.Ref. Data, 1992, vol. 21, p. 411.

    Article  CAS  Google Scholar 

  8. Ryu, S.-O., Hwang, S.M., and Rabinowitz, M.J., Rate Coefficient of the OCH via Shock-Tube Laser Absorption Spectroscopy, Chem. Phys. Lett., 1995, vol. 279.

  9. Baulch, D.L., Bowman, C.T., Cobos, C.J., et al., Evaluated Kinetic Data for Combustion Modeling: Supplement II, J. Phys. Chem. Ref. Data, 2005, vol. 34, p. 566.

    Article  Google Scholar 

  10. Yang, H., Gardiner, W.C., Shin, K.S., and Fujii, N., Shock Tube Study of the Rate Coefficient of H + O2 - OH + O, Chem. Phys. Lett., 1994, vol. 231, p. 449.

    Article  CAS  Google Scholar 

  11. Park, Y.K. and Vlachos, D.G., Chemistry Reduction and Thermokinetic Criteria for Ignition of Hydrogen-Air Mixtures at High Pressures, J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 735.

    Article  CAS  Google Scholar 

  12. Posvyanskii, VS., Velocity and Propagation Limits of Isothermal Flames, Cand. Sci. (Phys.—Math.) Dissertation, Moscow: Inst. of Chemical Physics, 1976.

    Google Scholar 

  13. Tablitsyfizicheskikh velichin: Spravochnik (Tables of Physical Quantities: A Handbook), Moscow: Atomizdat, 1976.

  14. Hitch, B.D. and Senser, D.W., Reduced H2—O2Mechanisms for Use in Reacting Flow Simulation, 26th Aerospace Sciences Meeting, Reno, Nev., 1988, AIAA Paper 88–0732.

  15. Konnov, A.A., Refinement of the Kinetic Mechanism of Hydrogen Combustion, Khim. Fiz., 2004, vol. 23, p. 5.

    CAS  Google Scholar 

  16. Rubtsov, N.M., Kotelkin, VD., and Karpov, V.P., Transition of Flame Propagation from Isothermal to Thermal Regimes in Chain Processes with Nonlinear Chain Branching, Kinet. Katal., 2004, vol. 45, p. 3 [Kinet. Catal. (Engl. Transl.), vol. 45, p. 1].

    Article  Google Scholar 

  17. Lewis, B. and von Elbe G., Combustion, Explosions and Flame in Gases, New York: Academic, 1987.

    Google Scholar 

  18. Marchuk, G.I., Metody vychislitel’noi matematiki (Methods of Computational Mathematics), Moscow: Nauka. 1989.

    Google Scholar 

  19. Buney, VA. and Babkin, VS., Effect of propylene additives on rich hydrogen-air flames, Mendeleev Commun., 2006, p. 12.

  20. Liu, D., MacFarlane R. Laminar Burning Velocities of H2-Air and H2-Air-Steam Flames, Combust. Flame, 1983, vol. 49, p. 59.

    Article  CAS  Google Scholar 

  21. Azatyan, V.V., Heterophase Chain Propagation in Combustion and Pyrolysis, Zh. Fiz. Khim., 1998, vol. 72, no. 3, p. 391 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 72, no. 3, p. 319].

    CAS  Google Scholar 

  22. Azatyan, V.V., Specific Features of Nonisothermic Branched-Chain Reactions and New Aspects of Theory, Kinet. Katal., 1999, vol. 40, p. 818 [Kinet. Catal. (Engl.Transl.), vol. 40, p. 741].

    Google Scholar 

  23. Aleksandrov, E.N., Kuznetsov, N.M., and Kozlov, S.N., Initiation of Chain and Thermal Explosions by the Reactor Surface: Criterion of the Involvement of Chain Branching in Thermal Explosion, Fiz. Goreniya Vzryva, 2007, vol. 43, no. 5, p. 44.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Rubtsov.

Additional information

Original Russian Text © N.M. Rubtsov, B.S. Seplyarskii, 2010, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2010, Vol. 44, No. 3, pp. 286–293.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubtsov, N.M., Seplyarskii, B.S. Numerical study of the effects of heterogeneous recombination and heterogeneous initiation on flame propagation in hydrogen-air mixtures at atmospheric pressure. Theor Found Chem Eng 44, 272–278 (2010). https://doi.org/10.1134/S0040579510030061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579510030061

Keywords

Navigation