Skip to main content
Log in

One-dimensional discrete mathematical models of extraction from a porous material

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two models for analyzing the process of extraction (and impregnation) from a porous material are considered. Cells, i.e., discrete space descriptions, are used in the models. The first model also assumes a discrete time description. In the second model, time varies continuously. It is shown that these two models and a conventional (diffusion) model form a hierarchical chain of models. Relationships for calculating the quantity of the target component in a porous solid are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksel’rud, G.A. and Lysyanskii, V.M., Ekstragirovanie. Sistema tverdoe telo -zhidkost’,(Extraction: Solid—Liquid System), Leningrad: Khimiya, 1974.

    Google Scholar 

  2. Aksel’rud, G.A. and Al’tshuler, M.A., Vvedenie v kapill-yarno-khimicheskuyu tekhnologiyu,(Introduction to Capillary Chemical Technology), Moscow: Khimiya, 1983.

    Google Scholar 

  3. Abiev, R.Sh., Study of the Process of Extraction from a Capillary-Porous Particle with a Bidispersed Structure, Zh. Prikl. Khim., 2000, vol. 74, no. 5, p. 754.

    Google Scholar 

  4. Abiev, R.Sh. and Ostrovskii, G.M., Modeling of the Process of Extraction from a Capillary-Porous Particle with a Bidispersed Structure, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 3, p. 270.

    Google Scholar 

  5. Malyshev, R.M., Kutepov, A.M., Zolotnikov, A.N., et al., Influence of Superimposition of the Field of Low-Frequency Oscillations on the Efficiency of Extraction and a Mathematical Model of the Process, Dokl. Akad. Nauk, 2001, vol. 381, no. 6, p. 800.

    CAS  Google Scholar 

  6. Babenko, Yu.I. and Ivanov, E.V., Mathematical Model of Extraction from a Solid with a Bidispersed Porous Structure, Teor. Osn. Khim. Tekhnol., 2005, vol. 39, no. 6, p. 644.

    Google Scholar 

  7. Ivanov, E.V. and Babenko, Yu. I., Elementary Models of Extraction from Porous Particles under the Effect of Pressure Pulses, Zh. Prikl. Khim., 2005, vol. 78, no. 9, p. 1478.

    Google Scholar 

  8. Karlin, S., Osnovy teorii sluchainykh protsessov,(Fundamentals of the Theory of Stochastic Processes), Moscow: Mir, 1971.

    Google Scholar 

  9. Kemeni, Dzh. and Snell, Dzh., Konechnye tsepi Markova,(Finite Markov Chains), Moscow: Nauka, 1970.

    Google Scholar 

  10. Gardiner, C.W., Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences,,Berlin: Wiley, 1971.

    Google Scholar 

  11. Ryzhik, I.M. and Gradshtein, I.S., Tablitsy integralov, summ, ryadov i proizvedenii,(Tables of Integrals, Sums, Series, and Products), Moscow: GITTL, 1951.

    Google Scholar 

  12. Lebedev, N.N., Spetsial’nyefunktsiiiikhprilozheniya,(Special Functions and Their Applications), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  13. Lavrent’ev, M.A. and Shabat, B.V., Metody teoriifunktsii kompleksnogo peremennogo, (Methods of the Theory of Functions of a Complex Variable), Moscow: Nauka, 1973.

    Google Scholar 

  14. Koshlyakov, N.S., Gliner, E.B., and Smirnov, M.M., Uravneniya v chastnykh proizyodnykh matematicheskoi fiziki,(Partial Differential Equations in Mathematical Physics), Moscow: Vysshaya Shkola, 1970.

    Google Scholar 

  15. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoifiziki, (Equations of Mathematical Physics), Moscow: Nauka, 1977.

    Google Scholar 

  16. Atkinson, F., Diskretnye i nepreryvnye granichnye zadachi,(Discrete and Continuous Boundary Problems), Moscow: Mir, 1968.

    Google Scholar 

  17. Kafarov, W and Dorokhov, I.N., Sistemnyi analiz prot-sessov khimicheskoi tekhnologii. Osnovy strategii,(System Analysis of Chemical Engineering Processes: Principles of Strategy), Moscow: Nauka, 1976.

    Google Scholar 

  18. Gel’perin, N.I., Pebalk, V.L., and Kostanyan, A.E., Struk-turapotokov i effectivnost kolonnykh apparatov khimicheskoi promyshlennosti,(Flow Patterns and Column Efficiency in the Chemical Industry), Moscow: Khimiya, 1977.

    Google Scholar 

  19. Moshinskii, A.I., Analysis of a Cellular Model with Back Mixing between the Cells and in the Presence of Stagnant Zones, Teor. Osn. Khim. Tekhnol., 1987, vol. 21, no. 6, p. 732.

    CAS  Google Scholar 

  20. Oigenblik, A.A., Rubashka, A.I., Tsibul’skii, V.G., et al., Influence of Stirring on the Characteristics of a Batch Process of the Chlorination of Polymers, Khim. Prom-st., 1989, no. 8, p. 607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Moshinskii.

Additional information

Original Russian Text © A.I. Moshinskii, 2010, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2010, Vol. 44, No. 1, pp. 45–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshinskii, A.I. One-dimensional discrete mathematical models of extraction from a porous material. Theor Found Chem Eng 44, 43–51 (2010). https://doi.org/10.1134/S0040579510010069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579510010069

Keywords

Navigation