Skip to main content
Log in

A Generator of synthesis gas and hydrogen based on a radiation burner

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The possibility of the conversion of methane into synthesis gas in rich methane-air mixtures under conditions of stable surface combustion in a volumetric permeable matrix in a radiation field of locked infrared irradiation is shown. It is suggested to use the combustion of hydrocarbons in a volumetric permeable matrix as a simple and compact generator of synthesis gas and hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krylov, I.F and Emel’yanov, V.E., Alternative Motor Fuels. Production, Use, Trends. Lecture 8. Hydrogen Fuels, Mir Nefteprod., 2007, no. 4, p. 43.

    Google Scholar 

  2. Fleish, T.H. and Sills, R.A., Large Scale Gas Conversion through Oxygenates: beyond GTL—FT. Natural Gas Conversion VII, Studies in Surface Science and Catalysis, Bao, X. and Xu, Y., Eds., vol. 147, p.31.

  3. Ashly, S., Cars on Fuel Elements, V Mire Nauki, 2005, no. 6, p. 47.

    Google Scholar 

  4. Garland, R., Hydrogen Production, Prepr. Pap.—Am. Chem. Soc., Div. Fuel Chem., 2007, vol. 52, part 2, p. 231.

    CAS  Google Scholar 

  5. Arutyunov, V.S. and Lapidus, A.L., Role of Gas Chemistry in the World Energetic, Vestn. Akad. Nauk, 2005, vol. 75, no. 8, p. 683.

    Google Scholar 

  6. Rostrup-Nielsen, J.R., Fuels and Energy for Future: The Role of Catalysis, Catalysis Reviews, 2004, vol. 46, nos. 3–4, p. 247.

    Article  CAS  Google Scholar 

  7. Sister, V.G., Bogdanov, V.A., and Kolbanovskii, Yu.A., Synthetic Gas Production by Methane’s Homogeneous Oxidation, Neftekhim., 2005, vol. 45, no. 6, p. 440.

    CAS  Google Scholar 

  8. Shmelev, VM., Margolin, A.D., and Krupkin, V.G., Agitated Gas Mixture Burning in Catalytic Radiation Burner, Khim. Fiz., 1998, vol. 17, no. 5, p. 81.

    CAS  Google Scholar 

  9. Shmelev, V.M., Agitated Gas Mixture Burning in Radiation Cavity between Matrix and Perforated Ceramic Screen, Khim. Fiz., 1999, vol. 18, no. 5, p. 84.

    CAS  Google Scholar 

  10. Shmelev, V.M. and Margolin, A.D., On Gas Mixture Burning above the Surface of Perforated Matrix, Khim. Fiz., 2000, vol. 19, no. 5, p. 36.

    CAS  Google Scholar 

  11. Nikolaev, V.M., Superadiabatic Compression of Gas Mixtures in Ballistic Facilities, Cand. Sci. (Math. and Phys.) Dissertation, Moscow, 2005.

  12. Sinev, M., Arutyunov, V, and Romanets, A., Kinetic Models of C 1-C 4 Alkane Oxidation as Applied to Processing of Hydrocarbon Gases: Principles, Approaches and Developments, Advances in Chemical Engineering, Marin, G.B., Ed., Amsterdam: Elsevier, 2007, vol. 32, p. 171.

    Google Scholar 

  13. Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidative Conversion of Methane), Moscow: Nauka, 1998.

    Google Scholar 

  14. Troshin, K.Ya., Arutyunov, VS., Borisov, A.A., Politenkova, G.G., Rodin, A.S., and Tsybenko, S.A., Oxidation Kinetics of Methane—Oxygen Rich Mixtures under Increased Pressures Near Self—Ignition Limit, Khim. Fiz., 2005, vol. 24, no. 3, p. 47.

    CAS  Google Scholar 

  15. Sister, V.G., Borisov, A.A., Troshin, K.Ya., Bilera, I.V., Bogdanov, VA., Politenkova, G.G., and Kolbanovskii, Yu.A., Methane Partial Oxidation under Burning and Self—Ignition Modes, Khim. Fiz., 2006, vol. 25, no. 1, p. 61.

    CAS  Google Scholar 

  16. Topse, H., Hydrocarbon Proc., 1988, vol. 67, no. 4, p. 77.

    Google Scholar 

  17. Davis, M.B. and Schmidt, L.D., The Seeding of Methane Oxidation, Combustion Flame, 1999, vol. 119, p. 182.

    Article  CAS  Google Scholar 

  18. Pushkarev, A.I., Remnev, G.E., and Ezhov, V.V., Noneqilibrium Plasma Chemical Conversion of Methane, Gorenie Plazmokhim., 2005, vol. 3, no. 2, p. 106.

    CAS  Google Scholar 

  19. Yu Chao, Ching-Tsuen Huang, How-Ming Lee, and Moo-Been Chang, Hydrogen Production via Partial Oxidation of Methane with Plasma—Assisted Catalysis, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 664–671.

    Article  Google Scholar 

  20. Iordanoglou, D.I., Bodke, A.S., and Schmidt, L.D., Oxygenates and Olefins from Alkanes in a Single—Gauze Reactor at Short Contact Times, J. Catal., 1999, vol. 187, p. 400.

    Article  CAS  Google Scholar 

  21. Hickman, D.A. and Schmidt, L.D., Syngas Formation by Direct Catalytic Oxidation of Methane, Science, 1993, vol. 259, p. 343.

    Article  CAS  Google Scholar 

  22. Fut’ko, S.I. and Zhdanok, S.A., Khimiya fil’tratsionnogo goreniya gazov (Chemistry of Gas Filtration Burning), Minsk: Belaruskaya navuka, 2004.

    Google Scholar 

  23. Basevich, V.Ya., Vedeneev, V.I., and Arutyunov, V.S., Study of Partial Oxidation of Hydrocarbons with Reference Production of Synthetic Gas, Teor. Found. Chem. Eng., 1996, vol. 30, no. 5, p. 456.

    CAS  Google Scholar 

  24. Shurupov, S.V., Kretova, T.A., Semenova, S.V., and Kolobkov, B.I., The Way to Improve the Production Process of Furnace Carbon under Incomplete Combustion of Natural Gas, Gazokhimiya, 2008, no. 1, p. 72.

    Google Scholar 

  25. Rozovskii, A.Ya., Lin, G.I., Samokhin, P.V., Yashina, O.V., Zavalishin, I.N., Kipnis, M.A., and Volnina, E.A., Dimethyl Ether and Range of Products on its Basis, Proc. 14th Int. Congr. on Catalysis, Seoul, July 13–18 2008, p. 269.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Arutyunov.

Additional information

Original Russian Text © V.S. Arutyunov, V.M. Shmelev, I.N. Lobanov, G.G. Politenkova, 2010, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2010, Vol. 44, No. 1, pp. 21–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arutyunov, V.S., Shmelev, V.M., Lobanov, I.N. et al. A Generator of synthesis gas and hydrogen based on a radiation burner. Theor Found Chem Eng 44, 20–29 (2010). https://doi.org/10.1134/S0040579510010033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579510010033

Keywords

Navigation