Skip to main content
Log in

Single-stage optimization problem with soft restrictions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Most chemical processes are designed with the application of inaccurate mathematical models. Therefore, the objective of optimized chemical processes under uncertainty becomes an actual problem of chemical technology. It is necessary to design a process satisfying all the requirements of the designer regardless of the changing external and internal factors. This paper considers a problem of single-stage optimization with soft restrictions. Moreover, these soft restrictions should be provided with some known probability. It is necessary to note that solution of this problem of single-stage optimization needs the calculation of multidimensional integrals for mathematical expectancy of the criterion functions and probabilistic restrictions. This paper considers an approach to solution of this problem of single-stage optimization based on transforming the probabilistic restrictions into deterministic ones. The efficiency of this approach was illustrated by a computational experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halemane, K.P. and Grossmann, I.E., Optimal Process Design Under Uncertainty, AIChE J., 1983, vol. 29, p. 425.

    Article  CAS  Google Scholar 

  2. Swaney, R.E. and Grossmann, I.E., An Index for Operational Flexibility in Chemical Process Design, AIChE J., 1985, vol. 31, p. 621.

    Article  CAS  Google Scholar 

  3. Grossmann, I.E. and Floudas, C.A., Active Constraint Strategy for Flexibility Analysis in Chemical Processes, Comput. Chem. Eng., 1987, vol. 11, no. 6, p. 675.

    Article  CAS  Google Scholar 

  4. Pistikopoulos, E.N. and Grossmann, I.E., Optimal Retrofit Design for Improving Process Flexibility in Nonlinear Systems-1. Fixed Degree of Flexibility, Comput. Chem. Eng., 1989, vol. 12, p. 1003.

    Article  Google Scholar 

  5. Bansal, V., Perkins, J.D., and Pistikopoulos, E.N., Flexibility Analysis and Design Using Parametric Programming Framework, AIChE J., 2002, vol. 48, p. 2851.

    Article  CAS  Google Scholar 

  6. Ahmad, S., Sahinidis, N.V., and Pistikopoulos, E.N., An Improved Algorithm for Optimization Under Uncertainty, Comput. Chem. Eng., 2000, vol. 23, p. 1589.

    Article  Google Scholar 

  7. Pistikopoulos, E.N. and Ierapetritou, M.G., Novel Approach for Optimal Process Design Under Uncertainty, Comput. Chem. Eng., 1995, vol. 19, p. 1089.

    Article  CAS  Google Scholar 

  8. Raspanti, C.G., Bandoni, J.A., and Biegler, L.T., New Strategies for Flexibility Analysis and Design Under Uncertainty, Comput. Chem. Eng., 2000, vol. 24, p. 2193.

    Article  CAS  Google Scholar 

  9. Ierapetritou, M.G., New Approach for Quantifying Process Feasibility: Convex and 1.D Quasi-Convex Regions, AIChE J., 2001, vol. 47, p. 1407.

    Article  CAS  Google Scholar 

  10. Floudas, C.A., Gumu, Z.H., and Ierapetritou, M.R., Global Optimization in Design Under Uncertainty: Feasibility Test and Feasibility Index Problems, Ind. Eng. Chem. Res., 2001, vol. 40, p. 4267.

    Article  CAS  Google Scholar 

  11. Carnahan, B.H., Luther, A., and Wilkes, J.O., Applied Numerical Methods, New York: Wiley, 1969.

    Google Scholar 

  12. Acevedo, J. and Pistikopoulos, E.N., Stochastic Optimization Based Algorithms for Process Synthesis Under Uncertainty, Comput. Chem. Eng., 1998, vol. 22, p. 647.

    Article  CAS  Google Scholar 

  13. Bernardo, F.P., Pistikopoulos, E.N., and Saraiva, P.M., Integration and Computational Issues in Stochastic Design and Planning Optimization Problems, Ind. Eng. Chem. Res., 1999, vol. 38, p. 3056.

    Article  CAS  Google Scholar 

  14. Bernardo, F.P. and Saraiva, P.M., Robust Optimization Framework for Process Parameter and Tolerance Design, AIChE J., 1998, vol. 44, p. 2007.

    Article  CAS  Google Scholar 

  15. Diwaker, U.M. and Kalagnanam, J.R., An Efficient Sampling Technique for Optimization Under Uncertainty, AIChE J., 1997, vol. 43, p. 440.

    Article  Google Scholar 

  16. Cramer, H., Mathematical Methods of Statistics, New York: Princeton Univ. Press, 1946.

    Google Scholar 

  17. Liu, B., Theory and Practice of Uncertain Programming, Heidelberg: Physica-Verlag, Springer Verlag Group, 2002.

    Google Scholar 

  18. Hettich, R. and Kortanek, K.O., Semi-Infinite Programming: Theory, Methods and Applications, SIAM Review, 1993, vol. 35, p. 380.

    Article  Google Scholar 

  19. Maine, P.Q., Polak, E., and Traham, R., An Outer Approximation Algorithm for Computer-Aided Design Problem, J. Optim. Theory Appl., 1979, vol. 28, p. 3.

    Google Scholar 

  20. Ostrovsky, G.M., Volin, Yu.M., and Senyavin, M.M., An Approach To Solving a Two-Stage Optimization Problem Under Uncertainty, Comp. Chem. Eng., 1997, vol. 21, p. 311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ziyatdinov.

Additional information

Original Russian Text © G.M. Ostrovskii, N. N. Ziyatdinov, T.V. Lapteva, D.D. Pervukhin, 2009, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2009, Vol. 43, No. 4, pp. 441–451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovskii, G.M., Ziyatdinov, N.N., Lapteva, T.V. et al. Single-stage optimization problem with soft restrictions. Theor Found Chem Eng 43, 420–429 (2009). https://doi.org/10.1134/S0040579509040113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579509040113

Keywords

Navigation