Skip to main content
Log in

Phase formation in gas-phase combustion and pyrolysis reactions under spark and radio-frequency discharge conditions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Doped ultrafine silicon dioxide powder with a narrow particle size distribution was obtained by RF discharge-stimulated dichlorosilane (SiH2C) oxidation at a low pressure using isobutylene as the combustion inhibitor and chromium hexacarbonyl (Cr(CO)6) as the dopant. The formation and morphology of the ultrafine particles are governed by the parameters of the RF discharge and by the chemical mechanism of the combustion reaction yielding the aerosol. Submicron-sized filamentous carbon structures can be obtained by isobutylene decomposition under spark discharge conditions in the presence of a molybdenum metal catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., and Petrov, O.F., Dusty Plasmas, Usp. Fiz. Nauk, 2004, vol. 174, no. 5, p. 495 [Phys.-Usp. (Engl. Transl.), vol. 174, no. 5, p. 447].

    Article  Google Scholar 

  2. Rubtsov, N.M., Tsvetkov, G.I., and Chernysh, V.I., Kinetic Regularities of Solid-Phase Formation in the Branching Chain Reaction of Dichlorosilane Oxidation in RF Plasma at Low Pressures and 293 K, Mendeleev Commun., 2006, vol. 16, p. 38.

    Article  Google Scholar 

  3. Ratnov, A.G., Rubtsov, N.M., Temchin, S.M., and Dement’ev, A.P., Deposition and Some Properties of Thin Silicon Dioxide Films Obtained by Monosilane and Dichlorosilane Oxidation at Low Temperatures and Pressures, Mikroelektronika, 1996, no. 1, p. 32.

  4. Chen, M., Chen, C.M., and Chen, C.F., Precursors of Carbon Nanotube Synthesis, J. Mater. Sci., 2002, vol. 37, no. 17, p. 3561.

    Article  CAS  Google Scholar 

  5. Suzdalev, I.P. and Suzdalev, P.I., Nanoclusters and Nanocluster Systems, Usp. Khim., 2001, vol. 70, no. 9, p. 203.

    Google Scholar 

  6. Sugano, T., Ikoma, T., and Takeisi, E., Vvedenie v mikroelektroniku (Introduction to Microelectronics), Moscow: Mir, 1988.

    Google Scholar 

  7. Fishmeister, Kh., Hot Isostatic Pressing, in Poroshkovaya metallurgiya (Powder Metallurgy), Kiev: Naukova Dumka, 1977, p. 87.

    Google Scholar 

  8. Elyutin, V.P. and Pavlov, Yu.A., Vysokotemperaturnye materialy (High-Temperature Materials), Moscow: Metallurgiya, 1972.

    Google Scholar 

  9. Rubtsov, N.M., Tsvetkov, G.I., and Chernysh, V.I., Factors in Phase Formation in the Heterogeneous Chain Oxidation of Dichlorosilane at Low Pressures, Teor. Osn. Khim. Tekhnol., 2004, vol. 38, no. 5, p. 546 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 38, no. 5, p. 516].

    Google Scholar 

  10. Chernysh, V.I., Rubtsov, N.M., and Tsvetkov, G.I., Flame Emission Spectra in the Region 400–600 nm during Low-Pressure Silane and Dichlorosilane Oxidation, Kinet. Katal., 2002, vol. 43, no. 4, p. 485 [Kinet. Catal. (Engl. Transl.), vol. 43, no. 4, p. 445].

    Article  Google Scholar 

  11. Rubtsov, N.M., Ryzhkov, O.T., and Chernysh, V.I., Reaction Products of Dichlorosilane Oxidation As Studied by IR Spectrophotometry, Kinet. Katal., 1995, vol. 36, no. 5, p. 645 [Kinet. Catal. (Engl. Transl.), vol. 36, no. 5, p. 589].

    Google Scholar 

  12. De Bleecker, K., Bogaerts, A., and Goedheer, W., Modelling of Nanoparticle Coagulation and Transport Dynamics in Dusty Silane Discharges, New J. Phys., 2006, vol. 178, no. 8, p. 2.

    Google Scholar 

  13. Slezov, V.V., Kinetics of the Diffusional Decomposition of Supersaturated Solid Solutions, Fiz. Tverd. Tela, 1959, vol. 1, no. 9, p. 433.

    Google Scholar 

  14. Geguzin, Ya.E. and Kaganovskii, Yu.S., Diffusional Mass Transfer in Discontinuous Films, Usp. Fiz. Nauk, 1978, vol. 125, no. 3, p. 489.

    CAS  Google Scholar 

  15. Geguzin, Ya.E., Kaganovskii, Yu.S., Kalinin, V.V., and Slezov, V.V., Coalescence of Discontinuous Gold Films, Fiz. Tverd. Tela, 1970, vol. 12, p. 1953.

    CAS  Google Scholar 

  16. Barin, I., Thermochemical Data of Pure Substances, Berlin: VCH, 1989, parts I, II.

    Google Scholar 

  17. Pierse, R. and Gaydon, A., The Identification of Molecular Spectra, New York: Academic, 1941.

    Google Scholar 

  18. Till, W.C. and Luxon, J.T., Integrated Circuits: Materials, Devices and Fabrication, Englewood Cliffs, N.J.: Prentice-Hall, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Rubtsov.

Additional information

Original Russian Text © N.M. Rubtsov, B.S. Seplyarskii, V.I. Chernysh, G.I, Tsvetkov, 2009, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2009, Vol. 43, No. 4, pp. 379–384.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubtsov, N.M., Seplyarskii, B.S., Chernysh, V.I. et al. Phase formation in gas-phase combustion and pyrolysis reactions under spark and radio-frequency discharge conditions. Theor Found Chem Eng 43, 361–365 (2009). https://doi.org/10.1134/S0040579509040022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579509040022

Keywords

Navigation