Skip to main content
Log in

Mathematical modeling of radial impurity distribution in crystals grown under laminar convection conditions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model of the process of the growth of semiconductor crystals by the Bridgman method is developed. In modeling of a known space experiment, the character of convective flows and their influence on the of the axial and radial impurity distribution during the growth of a crystal are studied. As a result of numerical calculations, the possibility of formation of the large radial nonuniformity of the impurity distribution observed in a number of space experiments is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nashel’skii, A.Ya., Tekhnologiya poluprovodnikovykh materialov (Technology of Semiconductor Materials), Moscow: Mir, 1987.

    Google Scholar 

  2. Muller, G., Crystal Growth from the Melt, Berlin: Springer, 1988.

    Google Scholar 

  3. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Mechanics of Liquids and Gases), Moscow: Drofa, 2003.

    Google Scholar 

  4. Goncharov, V.A. and Markov, E.V., Numerical Scheme for Modeling the Problems of Thermal Convection, Zh. Vychisl. Mat. Mat. Fiz., 1999, vol. 39, no. 1, p. 87 [Comput. Math. Math. Phys. (Engl. Transl.), vol. 39, no. 1, p. 81].

    Google Scholar 

  5. Goncharov, V.A., Method for Solving the Stefan Problem in a Two-Phase Region with a Nonplanar Boundary, Zh. Vychisl. Mat. Mat. Fiz., 2000, vol. 40, no. 11, p. 1706 [Comput. Math. Math. Phys. (Engl. Transl.), vol. 40, no. 11, p. 1638].

    Google Scholar 

  6. Ivanov, L.I., Zemskov, V.S., Kubasov, V.N., et al., Plavlenie, kristallizatsiya i fazoobrazovanie v nevesomosti. Eksperiment “Universal’naya pech’” po programme “Soyuz”-“Apollon” (Melting, Crystallization, and Phase Formation in Microgravity: “Universal Furnace” Experiment under the Apollo-Soyuz Program), Moscow: Nauka, 1979.

    Google Scholar 

  7. Will, A.F., Gatos, H.C., Lichtensteiner, M., and German, C.I., Crystal Growth and Segregation under Zero Gravity: Ge, J. Electrochem. Soc., 1978, vol. 125, p. 267.

    Google Scholar 

  8. Danilevsky, A.H., Boschert, St., and Benz, K.W., The Effect of the Orbital Attitude on the mg-Growth of InP Crystals, Microgravity Sci. Technol., 1997, vol. 10, no. 2, p. 106.

    Google Scholar 

  9. Gillies, D.C., Lehoczky, S.L., Szofran, F.R., et al., Effect of Residual Acceleration during Microgravity Directional Solidification of Mercury Cadmium Telluride on the USMP-2 Mission, J. Cryst. Growth, 1997, vol. 174, p. 101.

    Article  CAS  Google Scholar 

  10. Gidromekhanika i teplomassoobmen v nevesomosti (Hydromechanics and Heat and Mass Transfer under Microgravity), Avduevskii, V.S. and Polezhaev, V.I., Eds., Moscow: Nauka, 1982.

    Google Scholar 

  11. Gidromekhanika i teplomassoobmen pri poluchenii materialov (Hydromechanics and Heat and Mass Transfer in Production of Materials), Avduevskii, V.S. and Polezhaev, V.I., Eds., Moscow: Nauka, 1990.

    Google Scholar 

  12. Gatos, H.C., Witt, A.F., Lichtensteiger, M., and Hermann, C.J., Interface Marking in Crystals. Experiment MA-060: Apollo-Soyuz Test Project. Summary Science Report. V. 1, Washington, DC: NASA, 1997, p. 429.

    Google Scholar 

  13. Zemskov, V.S., New Scientific Ideas of the Processes Accompanying Directional Crystallization of the Melts: Overall Results of Experiments on the Growth of Semiconductor Crystals in Space Vehicles, Sbornik trudov. VII Ros. simp. ”Mekhanika nevesomosti. Itogi i perspektivy fundamental’nykh issledovanii gravitatsionno-chuvstvitel’nykh sistem” (Proc. VII Rus. Symp. “Mechanics of Zero Gravity: Results and Prospects of Basic Investigations of Gravitational-Sensitive Systems), Moscow, 2001, p. 34.

  14. Goncharov, V.A., Savostikov, A.A., Zemskov, V.S., et al., Study of the Influence of Small Forces on Radial Nonuniformity of Semiconductor Crystals, Trudy 6-i Mezhdunar. konf. “Rost kristallov i teplomassoperenos” (Proc. 6th Int. Conf. “Crystal Growth and Heat and Mass Transfer”), Obninsk, 2005, vol. 4, p. 793.

    CAS  Google Scholar 

  15. Polezhaev, V.I., Belo, M.S., Verezub, N.A., et al., Konvektivnye protsessy v nevesomosti (Convective Processes under Microgravity), Moscow: Nauka, 1991.

    Google Scholar 

  16. Zemskov, V.S., Belokurova, I.N., and Khavzhu, D.M., Impurity Distribution in the Cross Section of Crystals during Directional Crystallization under Microgravity, Fiz. Khim. Obrab. Mater., 1985, no. 6, p. 75.

  17. Belokurova, I.N., Zemskov, V.S., and Khavzhu, D.M., Analysis of the Results of Studying the Segregation of Components in the Doped Crystals of Germanium Grown by Directional Crystallization under Microgravity and on the Earth, Fiz. Khim. Obrab. Mater., 1990, no. 6, p. 71.

  18. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Mosk. Gos. Univ., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Goncharov.

Additional information

Original Russian Text © N.A. Baldina, B.V. Vasekin, V.A. Goncharov, 2009, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2009, Vol. 43, No. 4, pp. 371–378.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldina, N.A., Vasekin, B.V. & Goncharov, V.A. Mathematical modeling of radial impurity distribution in crystals grown under laminar convection conditions. Theor Found Chem Eng 43, 353–360 (2009). https://doi.org/10.1134/S0040579509040010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579509040010

Keywords

Navigation