Skip to main content
Log in

Simulation of the slug flow of a gas-liquid system in capillaries

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model for the gas-liquid slug flow in a capillary is developed. The velocity profiles in the bubble, film, and interbubble liquid are calculated. The calculated results are in good agreement with the experimental data of other researchers. The experimentally found bifurcational behavior of the slip velocity of bubbles relative to the two-phase mixture reported in the literature is described and supported by the theory. The reasons for which the bubble can stop in a small-diameter dead-end capillary are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hessel, V., Löwe, H., Müller A., and Kolb G., Chemical Micro Process Engineering: Processing and Plants, Weinheim: Wiley-VCH, 2005, p. 651.

    Google Scholar 

  2. Fukano, T., Kariyasaki, A., and Ide, H., Fundamental Data On the Gas Liquid Two Phase Flow, Proc. 3rd Int. ICMM-2005 Conf. on Microchannels and Minichannels, Toronto, Canada, 2005.

  3. Bauer, T., Schubert, M., Lange, R. and Abiev, R. Sh., Intensification of Heterogeneous Catalytic Gas-Fluid Interactions in Reactors with a Multichannel Monolithic Catalyst, Zh. Prikl. Khim, 2006, vol. 79, no. 7, p. 1057 [Rus. J. Appl. Chem. (Engl. Transl.), vol. 79, no. 7, p. 1047].

    Google Scholar 

  4. Taha, T. and Cui, Z.F., Hydrodynamics of Slug Flow Inside Capillaries, Chem. Eng. Sci., 2004, vol. 59, p. 1181.

    Article  CAS  Google Scholar 

  5. Hessel, V., Mikroverfahrenstechnik Fuer Die Chemische Produktion: Reaktorkonzepte, Anwendungen, Scale-Up, Kostenanalyse, DECHEMA-Regional-Kolloquium “Neue Entwicklungen in der Mikroreaktionstechnik und Mikrotechnik”. Max-Planck-Institut fuer Dynamik komplexer Technischer Systeme. Magdeburg, 2006.

  6. Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., and Turek, T., Monoliths As Multiphase Reactors: A Review, AIChE J., 2004, vol. 50, no. 11, p. 2918.

    Article  CAS  Google Scholar 

  7. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., and Heiszwolf, J.J., Multiphase Monolith Reactors: Chemical Reaction Engineering of Segmented Flow in Microchannels, Chem. Eng. Sci., 2005, vol. 60, p. 5895.

    Article  CAS  Google Scholar 

  8. Sokolov, V.N. and Domanskii, I.V., Gazozhidkostnye Reaktory (Gas-Liquid Reactors), Leningrad: Mashinostroenie, 1976.

    Google Scholar 

  9. Taylor, G.I., Deposition of a Viscous Fluid on the Wall of a Tube, J. Fluid Mech., 1961, no. 10, p. 161.

  10. Bretherton, F.P., The Motion of Long Bubbles in Tubes, J. Fluid Mech., 1961, no. 10, p. 166.

  11. Aussillous, P. and Quéré, D., Quick Deposition of a Fluid on the Wall of a Tube, Physics of Fluid, 2000, vol. 15, no. 10, p. 2367.

    Article  Google Scholar 

  12. Pokusaev, B. G., Zaitsev, A. A. and Zaitsev, V. A., Transfer Processes under Slug Flow Conditions in Three-Phase Media, Teor. Osn. Khim. Tekhnol., 1999, vol. 33, no. 6, p. 595 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 33, no. 6, p. 539].

    Google Scholar 

  13. Reinelt, D.A., The Rate at Which a Long Bubble Rises in a Vertical Tube, J. Fluid Mech., 1987, vol. 175, p. 557.

    Article  Google Scholar 

  14. Thulasidas, T.C., Abraham, M.A., and Cerro, R.L., Bubble-Train Flow in Capillaries of Circular and Square Cross Section, Chem. Eng. Sci., 1995, vol. 50, no. 2, p. 183.

    Article  CAS  Google Scholar 

  15. Liu, H., Vandu, C.O., and Krishna, R., Hydrodynamics of Taylor Flow in Vertical Capillaries: Flow Regimes, Bubble Rise Velocity, Liquid Slug Length, and Pressure Drop, Ind. Eng. Chem. Res., 2005, vol. 44, p. 4884.

    Article  CAS  Google Scholar 

  16. Van Baten, J.M. and Krishna, R., CFD Simulations of Wall Mass Transfer for Taylor Flow in Circular Capillaries, Chem. Eng. Sci., 2005, vol. 60, p. 1117.

    Article  CAS  Google Scholar 

  17. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Kleijn, C.R., and Heiszwolf, J.J., Inertial and Interfacial Effects on Pressure Drop of Taylor Flow in Capillaries, AIChE J., 2005, vol. 51, p. 2428.

    Article  CAS  Google Scholar 

  18. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, vol. 1.

    Google Scholar 

  19. Ostrovskii, G.M., Prikladnaya mekhanika neodnorodnykh sred (Applied Mechanics of Heterogeneous Media), St. Petersburg: Nauka, 2000.

    Google Scholar 

  20. Gibson, A.H., On the Motion of Long Air-Bubbles in a Vertical Tube, Philos. Mag., 1913, vol. 26, no. 156, p. 952.

    Google Scholar 

  21. Wallis, G.B., One-Dimensional Two-Phase Flow, New York: McGraw-Hill, 1969.

    Google Scholar 

  22. Summ, B.D. and Goryunov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physicochemical Foundations of Wetting and Spreading), Moscow: Khimiya, 1976.

    Google Scholar 

  23. Rouse, H., Advanced Mechanics of Fluids, New York: Wiley, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Additional information

Original Russian Text © R.Sh. Abiev, 2008, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2008, Vol. 42, No. 2, pp. 115–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abiev, R.S. Simulation of the slug flow of a gas-liquid system in capillaries. Theor Found Chem Eng 42, 105–117 (2008). https://doi.org/10.1134/S0040579508020012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579508020012

Keywords

Navigation