Skip to main content
Log in

Computer simulation of transient gas flows in complex round pipes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A computer model and algorithms for predicting and analyzing the transient incompressible gas flows in standard assemblies of complex round pipes are developed. It is shown that the vibrational safety and reliability of complex pipes are most reasonable to provide by using the three-dimensional computer simulation of the distribution of velocities, pressures, and temperatures over different sections of the pipe. It is shown that the developed three-dimensional computer model and obtained results can be used for calculating the integral indices of transient gas flows in assemblies of complex pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butusov, O.B. and Meshalkin, V.P., Komp’yuternoe modelirovanie nestatsionarnykh potokov v slozhnykh truboprovodakh (Computer Simulation of Transient Flows in Complex Pipelines), Moscow: Fizmatiz, 2005.

    Google Scholar 

  2. Butusov, O.B. and Meshalkin, V.P., Texture and Fractal Methods for Analyzing the Characteristics of Unsteady Gas Flows in Pipelines, Teor. Osn. Khim. Tekhnol., 2006, vol. 40, no. 3, p. 313 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 40, no. 3, p. 291].

    Google Scholar 

  3. Butusov, O.B., Kantyukov, R.A., and Meshalkin, V.P., Computer Simulation of Temperature and Pressure Fields in the Transient Turbulent Gas Flows in Industrial Pipelines, Khim. Prom-st., 1998, no. 7, pp. 433–438.

  4. Kutepov, A.M., Kantyukov, R.A., Artamonov, N.A., Butusov, O.B., and Meshalkin, V.P., Use of a Vortex Apparatus for Increasing the Rate of Regenerating a Saturated Absorbent Solution, Khim. Prom-st., 1998, no. 8, pp. 461–467.

  5. Kantyukov, R.A., Butusov, O.B., Dovi, V.G., and Meshalkin, V.P., Computer Simulation of Compressible Gas Flows through Complex Industrial Pipelines, Khim. Prom-st., 1998, no. 12, pp. 784–790.

  6. Bulkatov, A.N., Butusov, O.B., and Meshalkin, V.P., Integral Indices as Generalized Characteristics for Mathematical Modeling of Unsteady Hydrodynamic Processes in Chemical Engineering Equipment, Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol., 2002, no. 1, pp. 111–117.

  7. Meshalkin, V.P., Bulkatov, A.N., and Butusov, O.B., Algorithm of Optimal Approximation of Trajectories of Particles in Fractal Analysis of Flows in Chemical Engineering Equipment, Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol., 2002, no. 1, pp. 121–124.

  8. U. Schumann, G. Groetzbach, and L. Kleiser, Direct Numerical Simulation of Turbulence, in Prediction Methods for Turbulent Flows, Kollmann, W., Ed., Washington: Hemisphere, 1980.

    Google Scholar 

  9. Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical Simulation in Continuum Mechanics), Moscow: Fizmatgiz, 1994.

    Google Scholar 

  10. Belotserkovskii, O.M., Direct Numerical Simulation of Free Turbulence: Coherent Structures, Laminar-Turbulent Transition, and Chaos, in Etyudy o turbulentnosti (Essays on Turbulence), Moscow: Nauka, 1994, pp. 137–222.

    Google Scholar 

  11. Moser, R., Kim, J., and Mansour, N., Direct Numerical Simulation of Turbulent Channel Flow Up To Re = 590, Phys. Fluids, 1999, vol. 11, no. 4, p. 943.

    Article  CAS  Google Scholar 

  12. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika: Mekhanika turbulentnosti (Statistical Fluid Mechanics: Mechanics of Turbulence), Moscow: Nauka, 1965, part 1.

    Google Scholar 

  13. Milne-Thompson, L., Theoretical Hydrodynamics, London: Chapman and Hall, 1960.

    Google Scholar 

  14. Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, 1980.

    Google Scholar 

  15. Shuja, S.Z. and Habib, M.A., Fluid Flow and Heat Transfer Characteristics in Axisymmetric Annular Diffusers, Computers & Fluids, 1996, vol. 25, no. 2, p. 133.

    Article  Google Scholar 

  16. Rodi, W., Turbulence Models for Environmental. Problems, in Prediction Methods for Turbulent Flows, Kollmann, W., Ed., Washington: Hemisphere, 1980.

    Google Scholar 

  17. Vingaard, D.K., Simulation of a Boundary Layer, in Atmosfernaya turbulentnost’ i modelirovanie rasprostraneniya primesei (Atmospheric Turbulence and Simulation of Impurity Dispersion), Leningrad: Gidrometeoizdat, 1985, p. 83.

    Google Scholar 

  18. Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, New York: Springer-Verlag, 1988, vol. 2.

    Google Scholar 

  19. Roache, P.J., Computational Fluid Dynamics, Albuquerque: Hermosa, 1976.

    Google Scholar 

  20. Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependant Viscous Incompressible Flow of Fluid with Free Surface, The Physics of fluids, 1965, vol. 8, no. 12, p. 2182.

    Article  Google Scholar 

  21. Shapiro, I., Shtilman, L., and Tumin, A., On Stability of Flow in An Annular Channel, Phys. Fluids, 1999, vol. 11, no. 10, p. 2084.

    Article  Google Scholar 

  22. Schumann, U., Subgrid Scale Models for Finite Difference Simulations of Turbulent Flows in Plane Channel and Annuli, J. Comput. Physics, 1975, vol. 18, no. 4, p. 376.

    Article  Google Scholar 

  23. Leonard, A. and Wray, A., A New Numerical Method for the Simulation of Three-Dimensional Flow in a Pipe, Proc. Int. Conf. on Numerical Methods in Fluid Dynamics, Berlin: Springer, 1982, p. 335.

    Google Scholar 

  24. Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, New York: Hemisphere, 1984.

    Google Scholar 

  25. Gushchin, V.A. and Kon’shin, V.N., Transient Stalled and Transitional Liquid Flows Near Bounded Bodies, in Etyudy o turbulentnosti (Essays on Turbulence), Moscow: Nauka, 1994, p. 259.

    Google Scholar 

  26. Babakov, A.V., Simulation of Large-Scale Coherent Structures in a Near Wake, in Etyudy o turbulentnosti (Essays on Turbulence), Moscow: Nauka, 1994, p. 223.

    Google Scholar 

  27. Xu, D., Leschziner, M.A., Khoo, B.C., and Shu, C., Numerical Prediction of Separation and Reattachment of Turbulent Flow in Axisymmetric Diffuser, Computers & Fluids, 1997, vol. 26, no. 4, p. 417.

    Article  CAS  Google Scholar 

  28. Baughn, J.W., Hoffman, N.A., Takahashi, R.K., and Launder, B.E., Local Heat Transfer Downstream of An Abrupt Expansion in a Circular Channel with Constant Wall Heat Flux, ASME J. Heat Transfer, 1984, vol. 106, p. 789.

    Article  Google Scholar 

  29. Baughn, J.W., Hoffman, N.A., Takahashi, R.K., and Daehee, L., Heat Transfer Downstream of An Abrupt Expansion in the Transition Reynolds Number Regime, ASME J. Heat Transfer, 1987, vol. 109, p. 37.

    CAS  Google Scholar 

  30. Habib, M.A. and Whitelaw, J.H., The Calculation of Turbulent Flow in Wide-Angle Diffusers, Numerical heat transfer, 1982, vol. 5, p. 145.

    Article  Google Scholar 

  31. Zemanick, P.P. and Dougall, R.S., Local Heat Transfer Downstream of Abrupt Circular Channel Expansion, ASME J. Heat Transfer, 1970, vol. 92, p. 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Butusov.

Additional information

Original Russian Text © O.B. Butusov, V.P. Meshalkin, 2008, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2008, Vol. 42, No. 1, pp. 88–99.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butusov, O.B., Meshalkin, V.P. Computer simulation of transient gas flows in complex round pipes. Theor Found Chem Eng 42, 85–95 (2008). https://doi.org/10.1134/S0040579508010119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579508010119

Keywords

Navigation