Skip to main content

Simulation of the initiated addition of hydrocarbon free radicals and hydrogen atoms to oxygen via a nonbranched chain mechanism

An Erratum to this article was published on 01 April 2008

Abstract

A reaction scheme is suggested for the nonbranched-chain free-radical oxidation of hydrocarbons. The scheme includes the formation of a low-reactivity radical R (e.g., o-CH3C6H4CH2O ·4 ) not participating in further chain propagation. This reaction can effectively compete with reactions of chain propagation via the reactive hydrocarbon radical R· and, as the oxygen concentration in the reaction mixture is increased, begins to inhibit the chain process. The kinetic equation derived from the reaction scheme using the quasi-steady-state treatment provide a description for the nonmonotonic (peaking) dependence of the rate of the chain formation of molecular oxidation products on the oxygen concentration. The energetics of key radical-molecular reactions is considered, and the reaction scheme suggested is applied to the nonbranched-chain hydrogen oxidation involving the low-reactivity radical HO ·4

This is a preview of subscription content, access via your institution.

References

  1. Silaev, M.M., Simulation of the Nonbranched-Chain Addition of Saturated Free Radicals to Alkenes and Their Derivatives Yielding 1: 1 Adducts, Teor. Osn. Khim. Tekhnol., 2007, vol. 41, no. 3, p. 289 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 41, no. 3, p. 273].

    Google Scholar 

  2. Silaev, M.M., Simulation of Nonbranched Chain Processes for Producing 1,2-Alkanediols in Alcohol-Formaldehyde Systems, Teor. Osn. Khim. Tekhnol., 2007, vol. 41, no. 4, p. 379 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 41, no. 4, p. 357].

    Google Scholar 

  3. Emanuel, N.M., Denisov, E.T., and Maizus, Z.K., Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze (Chain Oxidation of Hydrocarbons in the Liquid Phase), Moscow: Nauka, 1965.

    Google Scholar 

  4. Benson, S.W., Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters, New York: Wiley, 1976, 2nd ed.

    Google Scholar 

  5. Walling, C., Free Radicals in Solution, New York: Wiley, 1957.

    Google Scholar 

  6. Shtern, V.Ya., Mekhanizm okisleniya uglevodorodov v gazovoi faze (Mechanism of the Gas-Phase Oxidation of Hydrocarbons), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  7. Bateman, L., Olefin Oxidation, Quart. Rev., 1954, vol. 8, no. 2, p. 147.

    Article  CAS  Google Scholar 

  8. Bäckström, H.L.J., Der Kettenmechanismus bei der Autoxydation von Aldehyden, Z. Phys. Chem. B, 1934, vol. 25, no. 1, p. 99.

    Google Scholar 

  9. Aliev, A.A. and Saraeva, V.V., Isomerization of Peroxy Radicals Resulting from the Radiation-Induced Oxidation of o-Xylene, Vestn. Mosk. Univ., Ser. 2: Khim., 1983, vol. 24, no. 4, p. 371.

    CAS  Google Scholar 

  10. Badin, E.J., The Reaction between Atomic Hydrogen and Molecular Oxygen at Low Pressures. Surface Effects, J. Am. Chem. Soc., 1948, vol. 70, no. 11, p. 3651.

    Article  CAS  Google Scholar 

  11. Silaev, M.M. and Bugaenko, L.T., Mathematical Simulation of the Kinetics of Radiation Induced Hydroxyalkylation of Aliphatic Saturated Alcohols, Radiat. Phys. Chem., 1992, vol. 40, no. 1, p. 1.

    CAS  Google Scholar 

  12. Silaev, M.M. and Bugaenko, L.T., The Kinetics ofα-Hydroxyalkyl Radical Addition to 2-Propen-1-ol and Formaldehyde, Kinet. Katal., 1994, vol. 35, no. 4, p. 509 [Kinet. Catal. (Engl. Transl.), vol. 35, no. 4, p. 463].

    CAS  Google Scholar 

  13. Gurvich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., et al., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Bond Dissociation Energies, Ionization Potentials, and Electron Affinity), Kondrat’ev, V.N., Ed., Moscow: Nauka, 1974.

    Google Scholar 

  14. Orlov, Yu.D., Lebedev, Yu.A., and Saifullin, I.Sh., Termokhimiya organicheskikh svobodnykh radikalov (Thermochemistry of Organic Free Radicals), Kutepov, A.M., Ed., Moscow: Nauka, 2001.

    Google Scholar 

  15. Pedley, J.B., Naylor, R.D., and Kirby, S.P., Thermochemical Data of Organic Compounds, London: Chapman & Hall, 1986, 2nd ed.

    Google Scholar 

  16. Buchachenko, A.L., Kompleksy radikalov i molekulyarnogo kisloroda s organicheskimi molekulami (Complexes of Radicals and Dioxygen with Organic Molecules), Beletskaya, I.P., Ed., Moscow: Nauka, 1984.

    Google Scholar 

  17. Francisco, J.S. and Williams, I.H., The Thermochemistry of Polyoxides and Polyoxy Radicals, Int. J. Chem. Kinet., 1988, vol. 20, no. 6, p. 455.

    Article  CAS  Google Scholar 

  18. Kokorev, V.N., Vyshinskii, N.N., Maslennikov, V.P., et al., Electronic Structure and Chemical Reactions of Peroxides: I. MINDO/3 Calculation of the Geometry and Enthalpy of Formation of the Ground States of Organic and Organoelement Peroxides, Zh. Strukt. Khim., 1981, vol. 22, no. 4, p. 9.

    CAS  Google Scholar 

  19. Dmitruk, A.F., Lobanov, V.V., and Kholoimova, L.I., Role of Tetroxide Conformation in the Mechanism of Peroxy Radical Recombination, Teor. Eksp. Khim., 1986, vol. 22, no. 3, p. 363.

    CAS  Google Scholar 

  20. Belyakov, V.A., Vasil’ev, R.F., Ivanova, N.M., et al., Electronic Model of the Excitation of Chemiluminescence in the Oxidation of Organic Compounds, Izv. Akad. Nauk SSSR, Ser. Fiz., 1987, vol. 51, no. 3, p. 540.

    CAS  Google Scholar 

  21. Ase, P., Bock, W., and Snelson, A., Alkylperoxy and Alkyl Radicals. 1. Infrared Spectra of CH3O2 and CH3O4CH3 and the Ultraviolet Photolysis of CH3O2 in Argon + Oxygen Matrices, J. Phys. Chem., 1986, vol. 90, no. 10, p. 2099.

    Article  CAS  Google Scholar 

  22. Pimentel, G.C. and McClellan, A.L., The Hydrogen Bond, Pauling, L., Ed., San Francisco: Freeman, 1960, p. 200.

    Google Scholar 

  23. Russell, G.A., Deuterium-Isotope Effects in the Autooxidation of Aralkyl Hydrocarbons: Mechanism of the Interaction of Peroxy Radicals, J. Am. Chem. Soc., 1957, vol. 79, no. 14, p. 3871.

    Article  CAS  Google Scholar 

  24. Silaev, M.M., The Competition Kinetics of Nonbranched Chain Processes of Free-Radical Addition to Double Bonds of Molecules with the Formation of 1: 1 Adducts and the Inhibition by the Substrate, Oxid. Commun., 1999, vol. 22, no. 2, p. 159.

    CAS  Google Scholar 

  25. Silaev, M.M., The Competition Kinetics of Radical-Chain Addition, Zh. Fiz. Khim., 1999, vol. 73, no. 7, p. 1180 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 73, no. 7, p. 1050].

    CAS  Google Scholar 

  26. Darmanyan, A.P., Gregory, D.D., Guo, Y., et al., Quenching of Singlet Oxygen by Oxygen-and Sulfur-Centered Radicals: Evidence for Energy Transfer to Peroxy Radicals in Solution, J. Am. Chem. Soc., 1998, vol. 120, no. 2, p. 396.

    Article  CAS  Google Scholar 

  27. Kanofsky, J.R., Singlet Oxygen Production from the Reactions of Alkylperoxy Radicals. Evidence from 1268-nm Chemiluminescence, J. Org. Chem., 1986, vol. 51, no. 17, p. 3386.

    Article  CAS  Google Scholar 

  28. Semenov, N.N., Tsepnye reaktsii (Chain Reactions), Moscow: Nauka, 1986, pp. 173, 148.

    Google Scholar 

  29. Reznikovskii, M., Tarasova, Z., and Dogadkin, B., Oxygen Solubility in Some Organic Liquids, Zh. Obshch. Khim., 1950, vol. 20, no. 1, p. 63.

    CAS  Google Scholar 

  30. Saraeva, V.V., Okislenie organicheskikh soedinenii pod deistviem ioniziruyushchikh izluchenii (Ionizing Radiation-Induced Oxidation of Organic Compounds), Moscow: Mosk. Gos. Univ., 1991, p.137.

    Google Scholar 

  31. Howard, J.A. and Ingold, K.U., Absolute Rate Constants for Hydrocarbon Autooxidation. VI. Alkyl Aromatic and Olefinic Hydrocarbons, Can. J. Chem., 1967, vol. 45, no. 8, p. 793.

    Article  CAS  Google Scholar 

  32. Smith, H.A. and Napravnik, A., The Photochemical Oxidation of Hydrogen, J. Am. Chem. Soc., 1940, vol. 62, no. 1, p. 385.

    Article  CAS  Google Scholar 

  33. Pagsberg, P.B., Eriksen, J., and Christensen, H.C., Pulse Radiolysis of Gaseous Ammonia-Oxygen Mixtures, J. Phys. Chem., 1979, vol. 83, no. 5, p. 582.

    Article  CAS  Google Scholar 

  34. Barr, N.F. and Allen, A.O., Hydrogen Atoms in the Radiolysis of Water, J. Phys. Chem., 1959, vol. 63, no. 6, p. 928.

    Article  CAS  Google Scholar 

  35. Silaev, M.M., Competitive Mechanism of the Nonbranched Radical Chain Oxidation of Hydrogen Involving the Free Cyclohydrotetraoxyl Radical , Which Inhibits the Chain Process, Khim. Vys. Energ., 2003, vol. 37, no. 1, p. 27 [High Energy Chem. (Engl. Transl.), vol. 37, no. 1, p. 24].

    Google Scholar 

  36. Silaev, M.M., Competition Kinetics of Nonbranched Chain Processes of Free Radical Addition to the C=C, C=O, and O=O Double Bonds of Molecules, Neftekhimiya, 2003, vol. 43, no. 4, p. 302 [Pet. Chem. (Engl. Transl.), vol. 43, no. 4, p. 258].

    Google Scholar 

  37. Silaev, M.M., Low-Reactive Free Radicals Inhibiting Nonbranched Chain Processes of Addition, Biofizika, 2005, vol. 50, no. 4, p. 585 [Biophysics (Engl. Transl.), vol. 20, no. 4, p. 511].

    CAS  Google Scholar 

  38. Bahnemann, D. and Hart, E.J., Rate Constants of the Reaction of the Hydrated Electron and Hydroxyl Radical with Ozone in Aqueous Solution, J. Phys. Chem., 1982, vol. 86, no. 2, p. 252.

    Article  CAS  Google Scholar 

  39. Staehelin, J., Bühler, R.E., and Hoigné, J., Ozone Decomposition in Water Studied by Pulse Radiolysis. 2. OH and HO4 As Chain Intermediates, J. Phys. Chem., 1984, vol. 88, no. 24, p. 5999.

    Article  CAS  Google Scholar 

  40. McKay, D.J. and Wright, J.S., How Long Can You Make an Oxygen Chain?, J. Am. Chem. Soc., 1998, vol. 120, no. 5, p. 1003.

    Article  CAS  Google Scholar 

  41. Cacace, F., de Petris, G., Pepi, F., and Troiani, A., Experimental Detection of Hydrogen Trioxide, Science, 1999, vol. 285, no. 5424, p. 81.

    Article  CAS  Google Scholar 

  42. Bühler, R.E., Staehelin, J., and Hoigné, J., Ozone Decomposition in Water Studied by Pulse Radiolysis. 1.HO2/O 2 and HO3/O 3 As Intermediates, J. Phys. Chem., 1984, vol. 88, no. 12, p. 2560.

    Article  Google Scholar 

  43. Boyd, A.W., Willis, C., and Miller, O.A., A Re-examination of the Yields in the High Dose Rate Radiolysis of Gaseous Ammonia, Can. J. Chem., 1971, vol. 49, no. 13, p. 2283.

    Article  CAS  Google Scholar 

  44. Silaev, M.M., Competition Mechanism of Substrate-Inhibited Radical Chain Addition to Double Bond, Neftekhimiya, 2000, vol. 40, no. 1, p. 33 [Pet. Chem. (Engl. Transl.), vol. 40, no. 1, p. 29].

    CAS  Google Scholar 

  45. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei (Modern Radiation Chemistry. Radiolysis of Gases and Liquids), Moscow: Nauka, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Silaev.

Additional information

Original Russian Text © M.M. Silaev, 2007, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, Vol. 41, No. 6, pp. 634–642.

An erratum to this article can be found online at http://dx.doi.org/10.1134/S0040579508020188.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silaev, M.M. Simulation of the initiated addition of hydrocarbon free radicals and hydrogen atoms to oxygen via a nonbranched chain mechanism. Theor Found Chem Eng 41, 831–838 (2007). https://doi.org/10.1134/S0040579507060073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579507060073

Keywords