Skip to main content
Log in

Modeling of the limiting step of water sorption by composite sorbents of the “calcium chloride in porous matrix” type

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A nonstationary model is proposed to describe the water sorption from air by composite sorbents of the “salt in a porous matrix” type via the interaction of water with the salt to form a salt solution in pores. It is shown that the dynamics of the moisture content at the adsorber outlet cannot be described under the assumption of constancy of the effective sorption rate constant. The limiting step of water sorption is analyzed, and it is supposed that the limiting step is the water diffusion through the solution layer forming near the external surface of a granule. An expression for the sorption rate constant as a function of the moisture content of the sorbent is proposed that takes into account the monotonic decrease in this constant with an increase in the amount of water sorbed. The effective diffusion coefficient at the limiting step of sorption is determined, which turns out to be close to the effective diffusion coefficient in an aqueous calcium chloride solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Syshchikov, V.I., Sorbtsionnye osushiteli vozdukha (Sorption Air Cleaners), Moscow: Stroiizdat, 1969.

    Google Scholar 

  2. Aristov, Yu.I., Selective Water Sorbents for Air Drying: From a Test Tube to Industrial Adsorber, Katal. Promsti, 2004, no. 6, p. 36.

  3. Levitskii, E.A., Aristov, Yu.I., Tokarev, M.M., and Parmon, V.N., “Chemical Heat Accumulators”: A New Approach to Accumulating Low Potential Heat, Sol. Energy Mater. Sol. Cells, 1996, vol. 44, no. 3, p. 219.

    Article  Google Scholar 

  4. Aristov, Yu.I., Tokarev, M.M., Cacciola, G., and Restuccia, G., Selective Water Sorbents for Multiple Applications: 1.CaCl2 Confined in Mesopores of the Silica Gel: Sorption Properties, React. Kinet. Catal. Lett., 1996, vol. 59, no. 2, p. 325.

    Article  CAS  Google Scholar 

  5. Aristov, Yu.I., Tokarev, M.M., DiMarko, G., Cacciola, G., Restuccia, G., and Parmon, V.N., Vapor-Condensed Matter and Melting-Solidification Equilibria in the Calcium Chloride-Water System Dispersed in Silica Gel Pores, Zh. Fiz. Khim., 1997, vol. 71, no. 2, p. 253 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 71, no. 2, p. 197].

    CAS  Google Scholar 

  6. Aristov, Yu.I., Tokarev, M.M., Cacciola, G., and Restuccia, G., Heat Capacity and Heat Conductivity of Aqueous Solutions of Calcium Chloride in Silica Gel Pores, Zh. Fiz. Khim., 1997, vol. 71, no. 3, p. 391 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 71, no. 3, p. 327].

    Google Scholar 

  7. Gordeeva, L.G., Restuccia, G., Cacciola, G., and Aristov, Yu.I., The Properties of the Lithium Bromide-Water System in Silica Gel Pores, Zh. Fiz. Khim., 1998, vol. 72, no. 7, p. 1229 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 72, no. 7, p. 1106].

    Google Scholar 

  8. Gordeeva, L.G., Restuccia, G., Tokarev, M.M., Cacciola, G., and Aristov, Yu.I., Adsorption Properties of the Lithium Bromide-Water System in Pores of Extended Graphite, Sibunit, and Alumna, Zh. Fiz. Khim., 2000, vol. 74, no. 12, p. 2211 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 74, no. 12, p. 2016].

    CAS  Google Scholar 

  9. Tanashev, Yu.Yu. and Aristov, Yu.I., Specific Heat of the Silica Gel-Calcium Chloride System: Effect of Adsorbed Water, Inzh.-Fiz. Zh., 2000, vol. 73, no. 5, p. 893.

    Google Scholar 

  10. Pankrat’ev, Yu.D., Tokarev, M.M., and Aristov, Yu.I., Heats of Water Sorption on Silica Gel Containing CaCl2 and LiBr, Zh. Fiz. Khim., 2001, vol. 75, no. 5, p. 910 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 75, no. 5, p. 806].

    Google Scholar 

  11. Aristov, Yu.I., Restuccia, G., Cacciola, G., and Parmon, V.N., A Family of New Working Materials for Solid Sorption Air Conditioning Systems, Appl. Therm. Eng., 2002, vol. 22, no. 2, p. 191.

    Article  CAS  Google Scholar 

  12. Gordeeva, L.G., Gubar’, A.V., Plyasova, L.M., Malakhov, V.V., and Aristov, Yu.I., Composite Water Sorbents of the Salt in Silica Gel Pores Type: The Effect of the Interaction between the Salt and the Silica Gel Surface on the Chemical and Phase Compositions and Sorption Properties, Kinet. Katal., 2005, vol. 46, no. 5, p. 780 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 5, p. 736].

    Google Scholar 

  13. Aristov, Yu.I., Tokarev, M.M., Koptyug, I.V., Il’ina, L.Yu., Korotkikh, V.N., Ostrovskii, N.M., Chumakova, N.A., Vernikovskaya, N.V., and Bukhavtsova, N.M., Study of Air Drying by New Composite Sorbents of the Salt in Porous Matrix Type”, in Sovremennye podkhody k issledovaniyu i opisaniyu protsessov sushki poristykh tel (Modern Approaches to Investigation and Description of Drying of Porous Bodies), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001, p. 180.

    Google Scholar 

  14. Tokarev, M.M., Koptyug, I.V., Ostrovskii, N.M., Chumakova, N.A., Ilyina, L.Y., Vernikovskaya, N.V., Bukhavtsova, N.M., and Aristov, Yu.I., Composite Sorbents “CaCl2 in a Porous Matrix” for Gas Drying: Fixed Bed Experiments, NMR-Imaging, Modelling, Proc. 5 th Italian Conf. Chem. Process Eng., Florence, Italy, May 20–23, 2001, vol. 1, p. 191.

    Google Scholar 

  15. Banks, P.J., Coupled Equilibrium Heat and Single Adsorbate Transfer in Fluid Flow through a Porous Medium: I. Characteristic Potentials and Specific Capacity Ratio, Chem. Eng. Sci., 1972, vol. 27, p. 1143.

    Article  CAS  Google Scholar 

  16. Close, D.J. and Banks, P.J., Coupled Equilibrium Heat and Single Adsorbate Transfer in Fluid Flow through a Porous Medium: II. Predictions for a Silica-Gel Air-Drier Using Characteristic Charts, Chem. Eng. Sci., 1972, vol. 27, p. 1157.

    Article  CAS  Google Scholar 

  17. Close, D.J. and Dunkle, R.V., Use of Adsorbent Beds for Energy Storage in Drying of Heating Systems, Solar Energy, 1976, vol. 19, p. 233.

    Article  Google Scholar 

  18. Kaerger, J. and Ruthven, D.M., Diffusion in Zeolites and Other Microporous Solids, New York: Wiley, 1992.

    Google Scholar 

  19. Pesaran, A.A. and Mills, A.F., Moisture Transport in Silica Gel Packed Beds, Int. J. Heat Mass Transfer, 1987, vol. 30, no. 6, p. 1037.

    Article  CAS  Google Scholar 

  20. San, J.Y. and Jiang, G.D., Modeling and Testing of a Silica Gel Packed Bed System, Int. J. Heat Mass Transfer, 1994, vol. 37, no. 8, p. 1173.

    Article  CAS  Google Scholar 

  21. Chi, C.W. and Wasan, D.T., Fixed Bed Adsorption Drying, AIChE J., 1970, vol. 16, no. 1, p. 23.

    Article  CAS  Google Scholar 

  22. Aerov, M.E., Todes, O.M., and Narinskii, M.A., Apparaty so statsionarnym zernistym sloem: Gidravlicheskie i teplovye osnovy raboty (Fixed-Bed Apparatuses: Hydraulic and Thermal Principles of Operation), Moscow: Khimiya, 1979.

    Google Scholar 

  23. Frolov, V.F., Modelirovanie sushki dispersnykh materialov (Modeling of Drying of Disperse Materials), Leningrad: Khimiya, 1987.

    Google Scholar 

  24. Lykov, A.V., Teplomassoobmen (Heat and Mass Transfer), Moscow: Energiya, 1972.

    Google Scholar 

  25. Aristov, Yu.I., Glaznev, I.S., Gordeeva, L.G., Koptyug, I.V., Ilyina, L.Yu., Karger, J., Krause, C., and Dawoud, B., Dynamics of Water Sorption on Composites “CaCl2 in Silica”: Single Grain, Granulated Bed, Consolidated Layer, in Fluid Transport in Nanoporous Materials, NATO Science Series II: Mathematics, Physics and Chemistry, Conner, C. and Fraissard, J. Eds., Amsterdam: Springer, 2006, vol. 219, p. 553.

    Google Scholar 

  26. Koptyug, I.V., Khitrina, L.Yu., Aristov, Yu.I., Tokarev, M.M., Iskakov, K.T., Parmon, V.N., and Sagdeev, R.Z., An 1H NMR Microimaging Study of Water Vapor Sorption by Individual Porous Pellets, J. Phys. Chem. B, 2000, vol. 104, p. 1695.

    Article  CAS  Google Scholar 

  27. Tokarev, M.M., Properties of the “Calcium Chloride in Porous Matrix” System, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Boreskov Inst. Catalysis, Sib. Div., Russ. Acad. Sci., 2002.

    Google Scholar 

  28. Prokopiev, S.I. and Aristov, Yu.I., Concentrated Aqueous Electrolyte Solutions: Analytical Equations for Humidity-Concentration Dependence, J. Solution Chem., 2000, vol. 29, no. 7, p. 633.

    Article  CAS  Google Scholar 

  29. Li, Z. and Yang, R.T., Concentration Profile for Linear Driving Force Model for Diffusion in a Particle, AIChE J., 1999, vol. 45, no. 1, p. 196.

    Article  CAS  Google Scholar 

  30. Baron, N.M., Kvyat, E.I., Podgornaya, E.A., Ponomareva, A.M., Ravdel’, A.A., and Timofeeva, Z.N., Kratkii spravochnik fiziko-khimicheskikh velichin (Concise Handbook of Physicochemical Quantities), Leningrad: Khimiya, 1974, p. 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.M. Ostrovskii, N.A. Chumakova, N.M. Bukhavtsova, N.V. Vernikovskaya, Yu.I. Aristov, 2007, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, Vol. 41, No. 1, pp. 86–93.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovskii, N.M., Chumakova, N.A., Bukhavtsova, N.M. et al. Modeling of the limiting step of water sorption by composite sorbents of the “calcium chloride in porous matrix” type. Theor Found Chem Eng 41, 83–90 (2007). https://doi.org/10.1134/S0040579507010095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579507010095

Keywords

Navigation