Skip to main content

Some features of the properties of porous and composite materials

Abstract

A semioctahedral model of the structure of low-porosity materials is proposed. Using this model, the percolation thresholds (critical porosities) for the permeability and the conductivity of these materials are determined. Expressions for the tortuosity of the pore space of granular and cavernous media are refined throughout the range of the permeable porosity, with the critical porosity taken into account. It is shown that porous materials and composites that are partially filled with a liquid are natural gradient materials. It is demonstrated that the properties of filters and membranes can be controlled both by varying the thickness of the permeable material and by modifying (compacting) the surface layer.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kheifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh (Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.

    Google Scholar 

  2. 2.

    Skorokhod, V.V., Solonin, Yu.M., and Uvarova, I.V., Khimicheskie, diffuzionnye i reologicheskie protsessy v tekhnologii poroshkovykh materialov (Chemical, Diffusion, and Rheological Processes, in Powder Material Technology), Kiev: Naukova dumka, 1990.

    Google Scholar 

  3. 3.

    Leibenzon, L.S., Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede (Motion of Natural Fluids in Porous Medium), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1947.

    Google Scholar 

  4. 4.

    Chizmadzhaev, Yu.A., Markin, M.R., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  5. 5.

    Dullen, F.A., Porous media: Fluid Transport and Pore Structure, New York: Academic, 1979.

    Google Scholar 

  6. 6.

    Volkov, D.P., Permeability of Porous Materials, Inzh.-Fiz. Zh., 1981, vol. 16, no. 3, p. 421.

    Google Scholar 

  7. 7.

    Siolkowski, I. and Siolkowski, D., Fluid Flow inside Packed Beds, Chem. Eng. Process, 1988, vol. 23, no. 3, p. 137.

    Article  Google Scholar 

  8. 8.

    Poristye pronitsaemye materialy: Spravochnik (Porous Permeable Material: Handbook), Belov, S.V., Ed., Moscow: Metallurgiya, 1987.

    Google Scholar 

  9. 9.

    Lovetskii, E.V. and Selyakov, V.N., Percolation Models of the Filtration Properties of a Medium, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1984, no. 3, p. 81.

  10. 10.

    Haughey, D.P. and Beveridge, G.S., On Structure of Packed Beds, Can. J. Chem. Eng., 1969, vol. 47, no. 1, p. 130.

    CAS  Article  Google Scholar 

  11. 11.

    Romm, E.S., Strukturnye modeli porovogo prostranstva gornykh porod (Structural Models of the Pore Space of Rocks), Leningrad: Nedra, 1985.

    Google Scholar 

  12. 12.

    Cheremskii, P.G., Slezov, V.V., and Betekhtin, V.I., Pory v tverdom tele (Pores in Solid), Moscow: Energoizdat, 1990.

    Google Scholar 

  13. 13.

    Kryuchkov, Yu.N., Determination of the Pore-Structure Parameters and Permeability of Porous Materials, Teor. Osn. Khim. Tekhnol., 1998, vol. 32, no. 5, pp. 515–523 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 32, no. 5, pp. 468–476].

    Google Scholar 

  14. 14.

    Kryuchkov, Yu.N., Structural Model of Monodisperse Powder Materials, Poroshk. Metall., 1993, nos. 9–10, p. 66.

  15. 15.

    Kryuchkov, Yu.N., Structural and Percolation Parameters of Porous and Powder Systems, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 6, pp. 617–626 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 35, no. 6, pp. 579–588].

    Google Scholar 

  16. 16.

    Arzt, E., The Influence of an Increasing Particle Coordination on the Densification of Spherical Powders, Acta Metall., 1982, vol. 30, no. 10, p. 1883.

    Article  CAS  Google Scholar 

  17. 17.

    Bocchini, G.F., The Influence of Porosity on the Characteristics of the Sintered Material, Int. J. Powder Metall., 1986, vol. 23, no. 3, p. 185.

    Google Scholar 

  18. 18.

    Berkman, A.S. and Mel’nikova, I.G., Poristaya keramika (Porous Ceramics), Leningrad: Stroiizdat, 1969.

    Google Scholar 

  19. 19.

    Mosin, Yu.M. and Vorob’eva, V.V., Features of Evaluation of the Pore Structure of Ceramic Filtration Materials, Ogneupory, 1995, no. 2, p. 19.

  20. 20.

    Georgiev, V.P., Todorov, R.P., Kostornov, A.G., et al., Regularity of the Structure of Porous Materials in Thin Layers, Poroshk. Metall., 1987, no. 6, p. 69.

  21. 21.

    Lunin, L.E., Kostornov, A.G., and Pavlenko, N.P., Uniformity of the Pore Structure of Permeable Powder Materials, Poroshk. Metall., 1986, no. 5, p. 47.

  22. 22.

    Vityaz’, P.A., Kaptsevich, V.M., Kostornov, A.G., et al., Formirovanie struktury i svoistv poristykh poroshkovykh materialov (Formation of Structure and Properties of Porous Powder Materials), Moscow: Metallurgiya, 1993.

    Google Scholar 

  23. 23.

    Kryuchkov, Yu.N., Evaluation of Percolation Properties of Porous Materials, Teor. Osn. Khim. Tekhnol., 1999, vol. 33, no. 4, pp. 369–374 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 33, no. 4, pp. 331–336].

    Google Scholar 

  24. 24.

    Kryuchkov, Yu.N., Taking into Account the Percolation Effects in Analyzing the Structure and Properties of Powder and Composite Materials, Dokl. Akad. Nauk Ukr., Ser. Mat. Estestsv. Tekh. Nauki, 1993, no. 11, p. 97.

  25. 25.

    Zarichnyak, Yu.P., Ordon’yan, S.S., and Sokolov, A.N., Scale-Up Effects in Percolation, Poroshk. Metall., 1986, no. 7, p. 64.

Download references

Author information

Affiliations

Authors

Additional information

Original Russian Text © Yu.N. Kryuchkov, 2007, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, Vol. 41, No. 1, pp. 77–85.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kryuchkov, Y.N. Some features of the properties of porous and composite materials. Theor Found Chem Eng 41, 74–82 (2007). https://doi.org/10.1134/S0040579507010083

Download citation

Keywords

  • Porous Material
  • Percolation Threshold
  • Permeable Material
  • Interparticle Contact
  • Critical Porosity