Skip to main content
Log in

History of the development of mathematical modeling of catalytic processes and reactors

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Boreskov, G.K. and Slin’ko, M.G., Modeling of Chemical Reactors, Teor. Osn. Khim. Tekhnol., 1967, vol. 1, no. 1, p. 5.

    CAS  Google Scholar 

  2. Ivanov, E.A., Beskov, V.S., and Slin’ko, M.G., Number of Stationary Solutions and Stability of an Adiabatic Process in a Flow with Longitudinal Dispersion, Teor. Osn. Khim. Tekhnol., 1967, vol. 1, no. 4, p. 488.

    CAS  Google Scholar 

  3. Fedotov, A.V., Volin, Yu.M., Ostrovskii, G.M., and Slin’ko, M.G., Application of the Maximum Principle to Determining the Optimal Conditions of Chemical Processes, Teor. Osn. Khim. Tekhnol., 1968, vol. 2, no. 1, p. 3.

    CAS  Google Scholar 

  4. Slin’ko, M.G., Main Aspects of Chemical Kinetics and Modeling of Chemical Reactors, Teor. Osn. Khim. Tekhnol., 1972, vol. 6, no. 6, p. 807.

    CAS  Google Scholar 

  5. Yablonskii, G.S. and Slin’ko, M.G., Optimization of Catalytic Processes with Variable Activity, Teor. Osn. Khim. Tekhnol., 1973, vol. 7, no. 5, p. 698; 1974, vol. 8, no. 1, p. 30.

    Google Scholar 

  6. Slin’ko, M.G., Some Ways of Development of Methods for Modeling Chemical Processes and Reactors, Teor. Osn. Khim. Tekhnol., 1976, vol. 10, no. 2, p. 171.

    CAS  Google Scholar 

  7. Zelenyak, T.I., Slin’ko, M.G., and Ivanov, E.A., Qualitative Analysis of Mathematical Models of Chemical Processes, Teor. Osn. Khim. Tekhnol., 1977, vol. 11, no. 1, p. 46.

    Google Scholar 

  8. Slin’ko, M.G., Studies in Modeling of Chemical Reactors, Teor. Osn. Khim. Tekhnol., 1978, vol. 12, no. 2, p. 206.

    CAS  Google Scholar 

  9. Slin’ko, M.G., Some Aspects of Modeling of Chemical Reactors, Teor. Osn. Khim. Tekhnol., 1981, vol. 15, no. 3, p. 361.

    CAS  Google Scholar 

  10. Slin’ko, M.G., Modeling of Heterogeneous Catalytic Processes, Teor. Osn. Khim. Tekhnol., 1992, vol. 32, no. 4, p. 433.

    Google Scholar 

  11. Slin’ko, M.G., Mathematical Simulation of Catalytic Reactions at the Border of Millennia: The State of the Art and Future Trends, Teor. Osn. Khim. Tekhnol., 1999, vol. 33, no. 4, pp. 380–385 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 33, no. 4, pp. 342–346].

    Google Scholar 

  12. Akramov, T.A., Belonosov, V.S., Zelenyak, T.I., Lavrent’ev, M.M., Jr., Slin’ko, M.G., and Sheplev, V.S., Mathematical Foundations of Modeling of Catalytic Processes: A Review, Teor. Osn. Khim. Tekhnol., 2000, vol. 34, no. 3, pp. 295–306 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 34, no. 3, pp. 263–273].

    Google Scholar 

  13. Kernerman, V.A., Mishenina, K.A., and Slin’ko, M.G., Mathematical Modeling of Ignition and Extinction of Surface Exothermic Reactions, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 4, pp. 410–417 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 35, no. 4, pp. 389–396].

    Google Scholar 

  14. Slin’ko, M.G., Evolution, Goals, and Objectives of Chemical Engineering, Teor. Osn. Khim. Tekhnol., 2003, vol. 37, no. 5, pp. 451–459 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 37, no. 5, pp. 421–428].

    Google Scholar 

  15. Boreskov, G.K. and Slinko, M.G., Calcul des prosessus catalytiques dans les uacteurs industriels, Chem. Eng. Sci., 1961, vol. 14, p. 259.

    Article  Google Scholar 

  16. Boreskov, G.K. and Slinko, M.G., Exothermal Catalytic Process Simulation, Third European Symposium on Chemical Reaction Engineering, London: Pergamon, 1964.

    Google Scholar 

  17. Slin’ko, M.G. and Sakharovskii, Yu.A., Catalysis in Heavy Water Production, Katal. Prom-sti, 2002, no. 1, p. 4.

  18. Slin’ko, M.G., Modelirovanie khimicheskikh reaktorov (Modeling of Chemical Reactors), Novosibirsk: Nauka, 1968.

    Google Scholar 

  19. Zelenyak, T.I., Matematicheskie voprosy modelirovaniya kataliticheskikh protsessov. Khimicheskie reaktory (Mathematical Aspects of Modeling of Catalytic Processes: Chemical Reactors), Novosibirsk: Nauka, 1984.

    Google Scholar 

  20. Zelenyak, T.I., Kachestvennaya teoriya kraevykh zadach dlya kvazilineinykh uravnenii 2-go poryadka parabolicheskogo tipa (Qualitative Theory of Boundary-Value Problems for Quasi-Linear Second-Order Parabolic Equations), Novosibirsk: Novosibirsk. Gos. Univ., 1972.

    Google Scholar 

  21. Zelenyak, T.I. and Slin’ko, M.G., Dynamics of Catalytic Systems, Kinet. Katal., 1977, vol. 18, no. 5, p. 1235; no. 6, p. 1548.

    CAS  Google Scholar 

  22. Samarskii, A.A. and Mikhailov, A.P., Matematicheskoe modelirovanie (Mathematical Modeling), Moscow: Nauka, 1997.

    Google Scholar 

  23. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1962.

    Google Scholar 

  24. Belyaev, V.D., Slin’ko, M.M., Timoshenko, V.I., and Slin’ko, M.G., Generation of Self-Oscillations in Hydrogen Oxidation on Nickel, Kinet. Katal., 1973, vol. 14, no. 3, p. 14.

    Google Scholar 

  25. Hugo, P. and Jakubith, N., Dynamisches Verhalten und Kinetik der Kohlenmonoxid-Oxidation am Platin-Katalysator, Chem. Ing. Tech., 1972, vol. 44, no. 6, p. 383.

    Article  CAS  Google Scholar 

  26. Slin’ko, M.M., Self-Oscillations of the Rate of the Interaction of Hydrogen with Oxygen on Platinum Catalysts, Cand. Sci. (Chem.) Dissertation, Moscow: Inst. Petrochem. Synthesis, Acad. Sci. USSR, 1977.

    Google Scholar 

  27. Belyaev, V.D., Self-Oscillations of the Rate of Hydrogen Oxidation on a Nickel Catalyst, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Inst. Catalysis, Sib. Div., Acad. Sci. USSR, 1977.

    Google Scholar 

  28. Slin’ko, M.G. and Slin’ko, M.M., Self-Oscillations of the Rate of Heterogeneous Catalytic Reactions, Usp. Khim., 1980, vol. 49, no. 4, p. 561.

    CAS  Google Scholar 

  29. Slin’ko, M.M., Self-Oscillation Processes in Heterogeneous Catalytic Systems, Doctoral (Chem.) Dissertation, Moscow: Inst. Phys. Chem., Russ. Acad. Sci., 2003.

    Google Scholar 

  30. Slin’ko, M.G. and Yablonskii, G.S., Dynamics of Heterogeneous Catalytic Reactions, in Nestatsionarnye i neravnovesnye protsessy v geterogennom katalize. Ser. Problemy kinetiki i kataliza (Nonstationary and Non-equilibrium Processes in Heterogeneous Catalysis, Ser. Problems of Kinetics and Catalysis), Moscow: Nauka, 1978, vol. 17, p. 154.

    Google Scholar 

  31. Sheplev, V.S., Modelirovanie kataliticheskikh reaktorov (Modeling of Catalytic Reactors), Novosibirsk: Novosibirsk. Gos. Univ., 1987.

    Google Scholar 

  32. Slin’ko, M.G., Plenarnye lektsii konferentsii po khimicheskim reaktoram: Khimreaktor-I-Khimreaktor-XIII (Plenary Lectures of Conferences on Chemical Reactors: Khimreaktor-I-Khimreaktor-XIII), Novosibirsk: Inst. Kataliza Sib. Otd. Ross. Akad. Nauk, 1996.

    Google Scholar 

  33. Slin’ko, M.G., Nonlinear Problems of Dynamics of Heterogeneous Catalytic Reactions and Reactors, Khim. Prom-st., 1992, no. 10, p. 574.

  34. Slin’ko, M.G., Nonlinear Dynamics as the Basis for the Theory of Catalytic Processes and Reactors, Trudy XIII Mezhdunar. Konf. po khimicheskim reaktoram (Proc. XIII Int. Conf. on Chemical Reactors), Novosibirsk: Inst. Kataliza Sib. Otd. Ross. Akad. Nauk, 2000.

    Google Scholar 

  35. Slin’ko, M.G., Osnovy i printsipy matematicheskogo modelirovaniya kataliticheskikh protsessov (Principles of Mathematical Modeling of Catalytic Processes), Novosibirsk: Inst. Kataliza Sib. Otd. Ross. Akad. Nauk, 2004.

    Google Scholar 

  36. Slin’ko, M.G., Nonlinear Dynamics in Catalysis, Katal. Prom-sti, 2006, no. 1, p. 5.

  37. Nicolis, G. and Prigogine, I., Self-Organization in Non-Equilibrium Systems, New York: Wiley-Interscience, 1977.

    Google Scholar 

  38. Ebeling, W., Strukturbildung bei irreversiblen Prozessen: eine Einfuhrung in die Theorie dissipativer Strukturen, Leipzig: Teubner, 1976. Translated under the title Obrazovanie struktur pri neobratimykh protsessakh, Moscow: Mir, 1979.

    Google Scholar 

  39. Gorodetskii, V., Dzachsel, W., and Block, J.H., Imaging the Oscillating CO-Oxidation on Pt-Surfaces with Field Ion Microscopy, Catal. Lett., 1993, vol. 19, p. 223.

    Article  CAS  Google Scholar 

  40. Gorodetskii, V., Lauterbach, J., Rotermund, H., Block, J.H., and Ertl, G., Coupling between Adjacent Crystal Planes in Heterogeneous Catalysis by Propagating Reaction-Diffusion Waves, Nature, 1994, vol. 370, p. 276.

    Article  CAS  Google Scholar 

  41. Tatarenko, A.A., Bykov, V.I., and Slin’ko, M.G., Neural-Network Simulation of Catalytic Processes in an Adsorption Layer, Dokl. Akad. Nauk, 2001, vol. 379, no. 2, pp. 223–225 [Dokl. Phys. (Engl. Transl.), vol. 379, no. 2, pp. 183–185].

    CAS  Google Scholar 

  42. Chesnokov, B.B., Stul’, B.Ya., Deryugin, A.V., and Slin’ko, M.G., V Mechanism of Failures in Industrial Catalytic Reactors: Self-Organized Criticality, Katal. Prom-sti, 2002, no. 3, p. 29.

  43. Timoshenko, V.I., Shtral’, I.Ya., Luzhkov, Yu.M., and Slin’ko, M.G., Automated System for Scientific Research in Catalysis, Khim. Prom-st., 1979, no. 3, p. 172.

  44. Slin’ko, M.G. and Timoshenko, V.I., Automated Systems for Scientific Research: Basis Methodology and Method for Accelerating the Design of Catalytic Processes, Katal. Prom-sti, 2005, no. 5.

  45. Samarskii, A.A. and Slin’ko, M.G., Mathematical Modeling of Heterogeneous Catalytic Reactions and Processes, Izv. Akad. Nauk, 1998, no. 10, p. 1895.

  46. Slin’ko, M.G. and Elenin, G.G., Mathematical Modeling of a Stage of a Heterogeneous Catalytic Reaction Using Molecular-Level Models, Khim. Prom-st., 1989, no. 4, p. 243.

  47. Elenin, G.G. and Slin’ko, M.G., Matematicheskoe modelirovanie yavlenii na poverkhnosti (Mathematical Modeling of Surface Phenomena), Moscow: Znanie, 1988.

    Google Scholar 

  48. Samarskii, A.A. and Slin’ko, M.G., Mathematical Modeling of Heterogeneous Catalytic Reactions and Processes, Izv. Akad. Nauk, Ser. Khim., 1998, no. 10, p. 1895.

  49. Elenin, G.G., Mathematical Modeling of Processes on a Catalyst Surface, Doctoral (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1993.

    Google Scholar 

  50. Semendyaeva, N.L., Stochastic Modeling of Elementary Surface Processes, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1998.

    Google Scholar 

  51. Peskov, N.V., Nonlinear Dynamics of Molecular Processes in Heterogeneous Systems, Doctoral (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 2003.

    Google Scholar 

  52. Kurkina, E.S., Mathematical Modeling of Spatiotemporal Structures in Reactive Diffusion Systems, Doctoral (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 2004.

    Google Scholar 

  53. Jaeger, N.I., Peskov, N.V., and Slin’ko, M.M., Analysis and Simulation of the Dynamics of a Catalyzed Model Reaction: CO Oxidation on Zeolite Supported Palladium, Kinet. Katal., 2003, vol. 44, no. 2, pp. 198–212 [Kinet. Catal. (Engl. Transl.), vol. 44, no. 2, pp. 183–197].

    Article  Google Scholar 

  54. Aris, R., Introduction to Analysis of Chemical Reactors, Englewood Cliffs, NY: Prentice-Hall, 1965. Translated under the title Analiz protsessov v khimicheskii reaktorakh, Moscow: Khimiya, 1967.

    Google Scholar 

  55. Uppal, A., Ray, W.H., and Poore, A.B., On the Dynamic Behavior of Continuous Stirred Tank Reactors, Chem. Eng. Sci., 1974, no. 29, p. 967.

  56. Carberry, J.J., Chemical and Catalytic Reaction Engineering, New York: McGraw-Hill, 1976.

    Google Scholar 

  57. Vaganov, D.A., Abramov, V.G., and Samoilenko, N.G., Dokl. Akad. Nauk, 1997, vol. 234, no. 3, p. 640.

    Google Scholar 

  58. Sheplev, V.S. and Slin’ko, M.G., Batch Operation of a Flow-Type Mixing Reactor, Dokl. Akad. Nauk, 1997, vol. 352, no. 6, pp. 781–785 [Dokl. Chem. Technol. (Engl. Transl.), vols. 352–354, pp. 1–4].

    Google Scholar 

  59. Malinovskaya, O.A., Beskov, V.S., and Slin’ko, M.G., Modelirovanie kataliticheskikh protsessov na poristykh zernakh (Modeling of Catalytic Processes on Porous Grains), Novosibirsk: Nauka, 1975.

    Google Scholar 

  60. Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford: Clarendon, 1975.

    Google Scholar 

  61. Slin’ko, M.G. and Evenchik, N.S., Mathematical Modeling of Chemical Processes on a Porous Catalyst Grain, Khim. Prom-st., 1980, no. 11, p. 655.

  62. Slin’ko, M.G., Dil’man, V.V., Markeev, B.M., and Kronberg, A.E., Modeling of Reactors with a Fixed Catalyst Bed, Khim. Prom-st., 1980, no. 11, p. 662.

  63. Slin’ko, M.G. and Sheplev, V.S., Modeling of Catalytic Processes in a Fluidized Bed, Kinet. Katal., 1970, vol. 11, no. 2, p. 531.

    CAS  Google Scholar 

  64. Slin’ko, M.G., Chumachenko, V.A., and Matros, Yu.Sh., Model of Mass Transfer between the Dense and Nondense Parts of a Fluidized Bed, Dokl. Akad. Nauk SSSR, 1973, vol. 213, no. 6, p. 1374.

    Google Scholar 

  65. Slin’ko, M.G., Pokrovskaya, S.A., and Sheplev, V.S., Analysis of the Chemical Process in a Fluidized Bed with a Catalyst in an Unsteady State, Dokl. Akad. Nauk SSSR, 1975, vol. 221, no. 1, p. 157.

    CAS  Google Scholar 

  66. Pokrovskaya, S.A., Sheplev, V.S., and Slin’ko, M.G., Evaluation of the Conditions of the Stationary Mode of a Catalytic Reaction in a Fluidized Bed, Dokl. Akad. Nauk SSSR, 1979, vol. 244, no. 3, p. 669.

    CAS  Google Scholar 

  67. Doronin, V.P., Sheplev, V.S., Pokrovskaya, S.A., and Slin’ko, M.G., Modeling of Exothermic Processes in an Upward Gas-Solid Catalyst Flow, Dokl. Akad. Nauk SSSR, 1977, vol. 234, no. 4, p. 880.

    CAS  Google Scholar 

  68. Funk, G.A., Harold, M.P., and Ka, M. Ng., A Novel Model for Reaction in Trickle-Bed with Flow Maldistribution, Ind. Eng. Chem. Res., 1990, vol. 29, p. 738.

    Article  CAS  Google Scholar 

  69. Slin’ko, M.G., Kirillov, V.A., Kulikov, A.V., Kuzin, N.A., and Shigarov, A.B., Thermal States of a Partially Wetted Catalyst Pellet in Hydrocarbon Hydrogenation, Dokl. Akad. Nauk, 2000, vol. 373, no. 3, p. 359–361 [Dokl. Chem. Technol. (Engl. Transl.), vols. 373–375, no. 3, pp. 27–29].

    CAS  Google Scholar 

  70. Kulikov, A.V., Kuzin, N.A., Shigarov, A.B., Kirillov, V.A., Kronberg, A.E., and Westerterp, K.R., Experimental Study of Vaporization Effect of Steady State and Dynamic Behavior of Catalytic Pellets, Catal. Today, 2001, vol. 66, p. 255.

    Article  CAS  Google Scholar 

  71. Slin’ko, M.G., Kirillov, V.A., Mikhailova, I.A., and Fadeev, S.I., Mathematical Model of a Catalytic Process on a Porous Grain in a Gas-Liquid-Solid Three-Phase System, Dokl. Akad. Nauk, 2001, vol. 376, no. 2, p. 219 [Dokl. Chem. (Engl. Transl.), vol. 376, nos. 1–3, p. 42].

    CAS  Google Scholar 

  72. Kirillov, V.A., Mikhailova, I.A., Fadeev, S.I., and Korolev, V.K., Study of Critical Phenomena in an Exothermic Reaction on a Partially Wetted Porous Catalyst Grain, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 5, p. 22.

    CAS  Google Scholar 

  73. Eigenberger, G. and Wegerle, U., Runaway in an Industrial Hydrogenation Reactor, Chemical Reaction Engineering Symposium, Boston, 1982, p. 133.

  74. Goossens, E., Donker, R., and van den Brink, F., Reactor Runaway in Pyrolysis Gasoline Hydrogenation, Proc. 1st Int. Symp. “Hydrotreatment and Hydrocracking of Oil Fraction,” Oostende, Belgium, February 17–19, 1997.

  75. Satterfield, C.N. and Ozel, F., Direct Solid-Catalyzed Reaction of a Vapor in an Apparently Completely Wetted Trickle-Bed Reactor, AIChE J., 1973, vol. 19, p. 1259.

    Article  CAS  Google Scholar 

  76. Slin’ko, M.G., Kirillov, V.A., Kuzin, N.A., and Shigarov, A.B., Nonlinear Phenomena in a Downward Gas-Liquid Flow through a Fixed Granular Catalyst Bed, Dokl. Akad. Nauk, 2001, vol. 380, no. 1, p. 77 [Dokl. Chem. (Engl. Transl.), vol. 380, no. 1, p. 271].

    CAS  Google Scholar 

  77. Shigarov, A.B., Kuzin, N.A., and Kirillov, V.A., Phase Disequilibrium in the Course of an Exothermic Reaction Accompanied by Liquid Evaporation in a Catalytic Trickle-Bed Reactor, Teor. Osn. Khim. Tekhnol., 2002, vol. 36, no. 2, pp. 181–187 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 36, no. 2, pp. 159–165].

    Google Scholar 

  78. Koptyug, I.V., Lysova, A.A., Kulikov, A.V., Kirillov, V.A., Parmon, V.N., and Sagdeev, R.Z., Functional Imaging and NMR Spectroscopy of an Operating Gas-Liquid-Solid Catalytic Reactor, Appl. Catal., 2004, vol. 267, p. 143.

    Article  CAS  Google Scholar 

  79. Koptyug, I.V., Kulikov, A.V., Lysova, A.A., Kirillov, V.A., Parmon, V.N., and Sagdeev, R.Z., Investigation of Heterogeneous Catalytic Reactions by the In Situ 1H NMR Micro Imaging, Chem. Sustain. Devel., 2003, vol. 11, p. 109.

    CAS  Google Scholar 

  80. Kirillov, V.A. and Koptyug, I.V., Critical Phenomena in Trickle-Bed Reactors, Ind. Eng. Chem. Res., 2005, vol. 44, p. 9727.

    Article  CAS  Google Scholar 

  81. Kirillov, V.A., Reaktory s uchastiem gaza, zhidkosti i tverdogo nepodvizhnogo katalizatora (Gas-Liquid-Fixed Solid Catalyst Reactors), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 1997.

    Google Scholar 

  82. Slin’ko, M.G., Plenarnye lektsii konferentsii po khimicheskim reaktoram: Khimreaktor-I-Khimreaktor-XIII (Plenary Lectures of Conferences on Chemical Reactors: Khimreaktor-I-Khimreaktor-XIII), Novosibirsk: Inst. Kataliza Sib. Otd. Ross. Akad. Nauk, 1996.

    Google Scholar 

  83. Slin’ko, M.G. and Sakharovskii, Yu.A., Catalysis in Heavy Water Production, Katal. Prom-sti, 2002, no. 1, p. 4.

  84. Slinko, M.G., Gryznov, V.M., and Smirnov, V.S., Proc. 7th Intern. Congress on Catalysis, Tokyo, 1980, p. 224.

  85. Gryznov, V.M. and Slinko, M.G., Selectivity in Catalysis by Hydrogen-Porous Membranes, Faraday Discuss. Chem. Soc., 1981, vol. 72, no. 5.

  86. Gryaznov, V.M., Catalyst-Membrane System for Petrochemistry, Ross. Khim. Zh., 1989, no. 6, p. 604.

  87. Eroshenkova, G.V., Volkov, S.A., Sakodynskii, K.N., and Slin’ko, M.G., Chromatographic Reactor with a Moving Catalyst Bed, Teor. Osn. Khim. Tekhnol., 1985, vol. 19, no. 4, p. 475.

    CAS  Google Scholar 

  88. Kirillov, V.A., Kuzin, N.A., Shigarov, A.B., Danilova, M.M., and Drobyshevich, V.I., Catalytic Heat-Exchanger Reactor for Strongly Isothermal Reactions, Teor. Osn. Khim. Tekhnol., 1998, vol. 32, no. 4, pp. 422–432 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 32, no. 4, pp. 379–389].

    Google Scholar 

  89. Boreskov, G.K., Matros, Yu.Sh., Kiselev, O.V., and Bunitovich, G.A., Performing a Nonstationary Heterogeneous Catalytic Process in a Nonstationary Mode, Dokl. Akad. Nauk SSSR, 1977, vol. 237, no. 1, p. 100.

    Google Scholar 

  90. Chesnokov, B.B., Kolobashkin, V.S., Stobetskii, V.N., Smirnov, V.P., Glotov, V.V., and Slin’ko, M.G., Analysis of the Operation of an Industrial Ethylene Oxide Synthesis Reactor, Taking into Account the Nonuniformity in the Heat Removal System, Khim. Prom-st., 1991, no. 12, p. 707.

  91. Abalkin, I.V. and Chetverushkin, B.N., Kinetically Matched Difference Schemes as a Model for Describing Gas-Dynamic Flows, Mat. Model., 1996, vol. 8, no. 8, p. 17.

    Google Scholar 

  92. Dorodnitsin, L.V., Kornilina, M.A., Chetverushkin, B.N., and Yakobovskii, M.V., Computer Modeling of Gas Flows Containing Chemically Active Components, Zh. Fiz. Khim., 1997, vol. 71, no. 12, p. 2275–1281 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 71, no. 12, pp. 2059–2065].

    Google Scholar 

  93. Chetverushkin, B.N., High-Performance Multiprocessor Computational Systems, Vestn. Ross. Akad. Nauk, 2002, vol. 72, no. 9, p. 786.

    Google Scholar 

  94. Chew, J.V.M., Cardoso, S.S.S., Paterson, W.R., and Wilson, D.N., CFD Studies of Dynamic Ganging, Chem. Eng. Sci., 2004, vol. 59, p. 3381.

    Article  CAS  Google Scholar 

  95. Slin’ko, M.G., A Short History of the Khimreaktor Conference, Katal. Prom-sti., 2001, no. 3, p. 58.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.G. Slin’ko, 2007, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, Vol. 41, No. 1, pp. 14–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slin’ko, M.G. History of the development of mathematical modeling of catalytic processes and reactors. Theor Found Chem Eng 41, 13–29 (2007). https://doi.org/10.1134/S0040579507010022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579507010022

Keywords

Navigation