Skip to main content
Log in

Violation of the \(T\) invariance in the probabilities of spin–flavor transitions of neutrino characterized by a real mixing matrix

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the simultaneous interaction of a neutrino with matter and the electromagnetic field in the two-flavor model. We show that \(T\)-invariance violating terms can appear in the probabilities of not only spin-flip transitions but also flavor transitions between states with the same helicity in the case of the interaction via charged currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Sakharov, “Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe,” Sov. Phys. Usp., 34, 392–393 (1991).

    Article  ADS  Google Scholar 

  2. M. Kobayashi and T. Maskawa, “\(CP\)-violation in the renormalizable theory of weak interaction,” Prog. Theor. Phys., 49, 652–657 (1973).

    Article  ADS  Google Scholar 

  3. C. Jarlskog, “A basis independent formulation of the connection between quark mass matrices, CP violation and experiment,” Z. Physik C, 29, 491–497 (1985).

    Article  ADS  Google Scholar 

  4. M. Fukugita and T. Yanagida, “Barygenesis without grand unification,” Phys. Lett. B, 174, 45–47 (1986).

    Article  ADS  Google Scholar 

  5. M. Trodden, “Electroweak baryogenesis,” Rev. Modern Phys., 71, 1463–1500 (1999); arXiv: hep-ph/9803479.

    Article  ADS  Google Scholar 

  6. S. Davidson, E. Nardi, and Y. Nir, “Leptogenesis,” Phys. Rep., 466, 105–177 (2008); arXiv: 0802.2962.

    Article  ADS  Google Scholar 

  7. B. Pontecorvo, “Mesonium and anti-mesonium,” Sov. Phys. JETP, 6, 429–431 (1957).

    ADS  Google Scholar 

  8. Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys., 28, 870–880 (1962).

    Article  ADS  Google Scholar 

  9. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford Univ. Press, Oxford (2007).

    Book  Google Scholar 

  10. W. Pauli, “Exclusion principle, Lorentz group and reflexion of space-time and charge,” in: Niels Bohr and the Development of Physics (W. Pauli, L. Rosenfeld, and V. Weisskopf, eds.), McGraw-Hill, New York (1955), pp. 30–51.

    Google Scholar 

  11. A. V. Chukhnova and A. E. Lobanov, “Resonance enhancement of neutrino oscillations due to transition magnetic moments,” Eur. Phys. J. C, 81, 821, 9 pp. (2021); arXiv: 2005.04503.

    Article  ADS  Google Scholar 

  12. A. E. Lobanov and A. V. Chukhnova, “Asymmetry of the propagation of left-handed neutrinos in an inhomogeneous magnetic field,” JETP, 133, 515–523 (2021).

    Article  ADS  Google Scholar 

  13. L. Wolfenstein, “Neutrino oscillations in matter,” Phys. Rev. D, 17, 2369–2374 (1978).

    Article  ADS  Google Scholar 

  14. A. E. Lobanov and A. V. Chukhnova, “Neutrino oscillations in homogeneous moving matter,” Mosc. Univ. Phys. Bull., 72, 454–459 (2017).

    Article  ADS  Google Scholar 

  15. V. A. Naumov, “Three neutrino oscillations in matter, cp-violation and topological phases,” Int. J. Mod. Phys. D, 1, 379–399 (1992).

    Article  ADS  Google Scholar 

  16. E. Akhmedov, P. Huber, M. Lindner, and T. Ohlsson, “T violation in neutrino oscillations in matter,” Nucl. Phys. B, 608, 394–422 (2001); arXiv: hep-ph/0105029.

    Article  ADS  Google Scholar 

  17. S. T. Petcov and Y.-L. Zhou, “On neutrino mixing in matter and CP and T violation effects in neutrino oscillations,” Phys. Lett. B, 785, 95–104 (2018); arXiv: 1806.09112.

    Article  ADS  Google Scholar 

  18. A. E. Lobanov, “Oscillations of particles in the Standard Model,” Theoret. and Math. Phys., 192, 1000–1015 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. E. Lobanov, “Particle quantum states with indefinite mass and neutrino oscillations,” Ann. Phys., 403, 82–105 (2019); arXiv: 1507.01256.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. E. Lobanov, “Neutrino oscillations in dense matter,” Russ. Phys. J., 59, 1891–1895 (2017); arXiv: 1612.01591.

    Article  Google Scholar 

  21. A. V. Chukhnova and A. E. Lobanov, “Neutrino flavor oscillations and spin rotation in matter and electromagnetic field,” Phys. Rev. D, 101, 013003, 18 pp. (2020); arXiv: 1906.09351.

    Article  ADS  Google Scholar 

  22. A. E. Lobanov and A. V. Chukhnova, “T-violation in neutrino oscillations,” JETP, 135, 312–319 (2022).

    Article  ADS  Google Scholar 

  23. A. V. Chukhnova and A. E. Lobanov, “\(T\) violation without complex entries in the lepton mixing matrix,” Phys. Rev. D, 105, 073010, 7 pp. (2022); arXiv: 2203.06426.

    Article  ADS  Google Scholar 

  24. K. Fujikawa and R. E. Shrock, “Magnetic moment of a massive neutrino and neutrino-spin rotation,” Phys. Rev. Lett., 45, 963–966 (1980).

    Article  ADS  Google Scholar 

  25. R. E. Shrock, “Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories,” Nucl. Phys. B, 206, 359–379 (1982).

    Article  ADS  Google Scholar 

  26. I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, and M. G. Shchepkin, “Sum rules for neutrino oscillations,” Sov. J. Nucl. Phys., 35, 708 (1982).

    Google Scholar 

  27. W. Grimus and P. Stockinger, “Real oscillations of virtual neutrinos,” Phys. Rev. D, 54, 3414–3419 (1996).

    Article  ADS  Google Scholar 

  28. I. P. Volobuev, “Quantum field-theoretical description of neutrino and neutral kaon oscillations,” Internat. J. Modern Phys. A, 33, 1850075, 14 pp. (2018).

    Article  ADS  MathSciNet  Google Scholar 

  29. V. O. Egorov and I. P. Volobuev, “Neutrino oscillation processes in a quantum-field-theoretical approach,” Phys. Rev. D, 97, 093002, 9 pp. (2018).

    Article  ADS  Google Scholar 

  30. E. V. Arbuzova, A. E. Lobanov, and E. M. Murchikova, “Pure quantum states of a neutrino with rotating spin in dense magnetized matter,” Phys. Rev. D, 81, 045001, 16 pp. (2010); arXiv: 0903.3358.

    Article  ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, Pergamon Press, Oxford–London (1962).

    Google Scholar 

  32. A. E. Lobanov, “Radiation and self-polarization of neutral fermions in quasi-classical description,” J. Phys. A: Math. Gen., 39, 7517–7529 (2006); arXiv: hep-ph/0311021.

    Article  ADS  MathSciNet  Google Scholar 

  33. J. von Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik,” Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1927, 245–272 (1927).

    Google Scholar 

  34. L. D. Landau, “Das Dämpfungsproblem in der Wellenmechanik,” Z. Physik, 45, 430–441 (1927).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to A. E. Lobanov, A. V. Borisov, and I. P. Volobuev for the fruitful discussions.

Funding

This work was supported by the Theoretical Physics and Mathematics Advancement Foundation “Basis” (grant No. 19-2-6-100-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chukhnova.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 694–707 https://doi.org/10.4213/tmf10511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukhnova, A.V. Violation of the \(T\) invariance in the probabilities of spin–flavor transitions of neutrino characterized by a real mixing matrix. Theor Math Phys 217, 2005–2015 (2023). https://doi.org/10.1134/S0040577923120152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120152

Keywords

Navigation