Skip to main content
Log in

Resonance fluorescence of polar quantum systems in a bichromatic field

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study spectral properties of fluorescent radiation from a two-level quantum system with broken inversion spatial symmetry, which can be implemented as a model of a one-electron two-level atom whose electric dipole moment operator has permanent unequal diagonal matrix elements. We consider the case of the excitation of this system by a bichromatic laser field consisting of a high-frequency resonance component with the frequency coinciding with the atomic transition frequency and a low-frequency component whose frequency coincides with the Rabi frequency of the high-frequency component. We show that by changing the intensity of the low-frequency component, we can efficiently control spectral properties of the fluorescent radiation of the system in the high-frequency range. We discuss possible methods for the experimental detection and practical use of the effects under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev., 188, 1969–1975 (1969).

    Article  ADS  Google Scholar 

  2. F. Schuda, C. R. Stroud, Jr., and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B: Atom. Mol. Phys., 7, L198–L202 (1974).

    Article  ADS  Google Scholar 

  3. F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett., 35, 1426–1429 (1975).

    Article  ADS  Google Scholar 

  4. W. Hartig, W. Rasmussen, R. Schieder, and H. Walther, “Study of the frequency distribution of the fluorescent light induced by monochromatic radiation,” Z. Physik A, 278, 205–210 (1976).

    Article  ADS  Google Scholar 

  5. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett., 99, 187402, 4 pp. (2007).

    Article  ADS  Google Scholar 

  6. S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot,” Optica, 2, 1072–1077 (2015).

    Article  ADS  Google Scholar 

  7. C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. Le Gall, and M. Atatüre, “Quadrature squeezed photons from a two-level system,” Nature, 525, 222–225 (2015).

    Article  ADS  Google Scholar 

  8. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Jr., Yu. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science, 327, 840–843 (2010).

    Article  ADS  Google Scholar 

  9. V. A. Kovarskii, “Quantum processes in biological molecules. Enzyme catalysis,” Phys.-Usp., 42, 797–815 (1999).

    Article  ADS  Google Scholar 

  10. O. V. Kibis, G. Ya. Slepyan, S. A. Maksimenko, and A. Hoffmann, “Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry,” Phys. Rev. Lett., 102, 023601, 4 pp. (2009).

    Article  ADS  Google Scholar 

  11. A. V. Soldatov, “Laser frequency down-conversion by means of a monochromatically driven two-level system,” Modern Phys. Lett. B, 30, 1650331, 11 pp. (2016).

    Article  ADS  Google Scholar 

  12. A. V. Soldatov, “Broadband EM radiation amplification by means of a monochromatically driven two-level system,” Modern Phys. Lett. B, 31, 1750027, 11 pp. (2017).

    Article  ADS  Google Scholar 

  13. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Fluorescence in a quantum system with violated symmetry,” Mosc. Univ. Phys. Bull., 73, 154–161 (2018).

    Article  ADS  Google Scholar 

  14. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Low-frequency fluorescence spectrum of a laser driven polar quantum emitter damped by squeezed vacuum with finite bandwidth,” J. Phys.: Conf. Ser., 2056, 012001, 8 pp. (2021).

    Google Scholar 

  15. N. N. Bogolubov, Jr. and A. V. Soldatov, “EM field frequency down-conversion in a quantum two-level system damped by squeezed vacuum reservoir,” Phys. Part. Nucl., 51, 762–765 (2020).

    Article  Google Scholar 

  16. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Fluorescence spectrum of a laser driven polar quantum emitter damped by degenerate squeezed vacuum with finite bandwidth,” Appl. Math. Inf. Sci., 16, 235–241 (2022).

    Google Scholar 

  17. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Electromagnetic radiation amplification by means of a driven two-level system damped by broadband squeezed vacuum reservoir,” J. Phys.: Conf. Ser., 1560, 012001, 8 pp. (2020).

    Google Scholar 

  18. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Probe-absorption spectrum of a polar quantum emitter in a squeezed finite-bandwidth vacuum,” Phys. Part. Nucl. Lett., 19, 58–65 (2022).

    Article  Google Scholar 

  19. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge (1997).

    Book  Google Scholar 

  20. R. R. Puri, Mathematical Methods of Quantum Optics (Springer Series in Optical Sciences, Vol. 79), Springer, Berlin–Heidelberg (2001).

    Google Scholar 

  21. C. W. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences (Springer Series in Synergetics, Vol. 13), Springer, Heidelberg (2004).

    Google Scholar 

  22. H. Carmichael, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs, Vol. 18), Springer, Berlin (1993).

    Book  Google Scholar 

  23. Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A, 48, 3092–3104 (1993).

    Article  ADS  Google Scholar 

  24. Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A, 53, 4275–4287 (1996).

    Article  ADS  Google Scholar 

  25. Z. Ficek, J. Seke, A. V. Soldatov, G. Adam, “Fluorescence spectrum of a two-level atom driven by a multiple modulated field,” Phys. Rev. A, 64, 013813, 10 pp. (2001).

    Article  ADS  Google Scholar 

  26. R. J. Glauber, Quantum Theory of Optical Coherence: Selected Papers and Lectures, Wiley-VCH, Weinheim (2007).

    Google Scholar 

  27. G. S. Agarwal, “Quantum statistical theories of spontaneous emission and their relation to other approaches,” in: Quantum Optics (Springer Tracts in Modern Physics, Vol. 70, G. Höhler, ed.), Springer, Berlin, Heidelberg (1974), pp. 1–128.

    Chapter  Google Scholar 

  28. A. Joshi and S. S. Hassan, “On the nature of the resonance fluorescence spectrum of a driven two-level atom in an off-resonant squeezed vacuum,” J. Phys. B: At. Mol. Opt. Phys., 30, L557–L564 (1997).

    Article  ADS  Google Scholar 

  29. M. Lax, “Quantum noise. XI. Multitime correspondence between quantum and classical stochastic processes,” Phys. Rev., 172, 350–361 (1968).

    Article  ADS  Google Scholar 

  30. Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer Series in Optical Sciences, Vol. 100), Springer, New York (2005).

    Google Scholar 

  31. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett., 90, 027402, 4 pp. (2003).

    Article  ADS  Google Scholar 

  32. Y.-J. Lu, J. Kim, H.-Y. Chen et al., “Plasmonic nanolaser using epitaxially grown silver film,” Science, 337, 450–453 (2012).

    Article  ADS  Google Scholar 

  33. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature, 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  34. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature, 466, 735–738 (2010).

    Article  ADS  Google Scholar 

  35. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A, 71, 063812, 7 pp. (2005).

    Article  ADS  Google Scholar 

  36. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Spectrum of surface plasmons excited by spontaneous quantum dot transitions,” JETP, 117, 205–213 (2013).

    Article  ADS  Google Scholar 

  37. E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, and A. A. Lisyansky, “Modification of the resonance fluorescence spectrum of a two-level atom in the near field of a plasmonic nanoparticle,” JETP Lett., 97, 452–458 (2013).

    Article  ADS  Google Scholar 

  38. V. Yu. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Relaxation of interacting open quantum systems,” Phys. Usp., 62, 510–523 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the referees who drew their attention to the interesting and very important results obtained in the process of theoretical and experimental studies of the quantum optical properties of plasmonic quantum nanosystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Soldatov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 480–498 https://doi.org/10.4213/tmf10500.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoliubov, Jr., N.N., Soldatov, A.V. Resonance fluorescence of polar quantum systems in a bichromatic field. Theor Math Phys 217, 1827–1841 (2023). https://doi.org/10.1134/S0040577923120036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120036

Keywords

Navigation