Skip to main content
Log in

On the scattering problem for a potential decreasing as the inverse square of distance

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A solution of the scattering problem is obtained for the Schrödinger equation with the potential of induced dipole interaction, which decreases as the inverse square of the distance. Such a potential arises in the collision of an incident charged particle with a complex of charged particles (for example, in the collision of electrons with atoms). An integral equation for the wave function is constructed for an arbitrary value of the orbital momentum of relative motion. By solving this equation, an exact integral representation for the \(K\)-matrix of the problem is obtained in terms of the wave function. This representation is used to analyze the behavior of the \(K\)-matrix at low energies and to obtain comprehensive information on its threshold behavior for various values of the dipole momentum. The resulting solution is applied to study the behavior of the scattering cross sections in the electron–positron–antiproton system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. We have chosen the formulation of the scattering problem leading to a real solution. Other equivalent formulations are obtained by simple renormalization.

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-relativistic Theory (Addison-Wesley Series in Advanced Physics), Pergamon Press Ltd., London–Paris (1958).

    Google Scholar 

  2. V. P. Zhigunov and B. N. Zakhar’ev, Methods of Strong Coupling of Channels in Quantum Scattering Theory [in Russian], Atomizdat, Moscow (1974).

    Google Scholar 

  3. J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, John Wiley & Sons, New York (1972).

    Google Scholar 

  4. M. Gailitis and R. Damburg, “Some features of the threshold behavior of the cross section for exitation of the hydrogen by electrons due to the existence of a linear Stark effect in hydrogen,” Sov. Phys. JETP, 17, 1107–1110 (1963).

    Google Scholar 

  5. M. Gailitis and R. Damburg, “The influence of close coupling on the threshold behaviour of cross sections of electron-hydrogen scattering,” Proc. Phys. Soc., 82, 192–200 (1963).

    Article  ADS  Google Scholar 

  6. P. Descouvemont and D. Baye, “The \(R\)-matrix theory,” Rep. Prog. Phys., 73, 036301, 44 pp. (2010).

    Article  ADS  Google Scholar 

  7. P. G. Burke, \(R\)-Matrix Theory of Atomic Collisions, Springer, Heidelberg, Dordrecht, London, New York (2011).

    Book  MATH  Google Scholar 

  8. P. Péres, D. Banerjee, F. Biraben et al. (Collab.), “The GBAR antimatter gravity experiment,” Hyperfine Interactions, 233, 21–27 (2015).

    Article  ADS  Google Scholar 

  9. G. Testera, S. Aghion, C. Amsler et al. (AEgIS Collab.), “The AEgIS experiment,” Hyperfine Interactions, 233, 13–20 (2015).

    Article  ADS  Google Scholar 

  10. Chi Yu Hu, D. Caballero, and Z. Papp, “Induced long-range dipole-field-enhanced antihydrogen formation in the \({\bar p}+Ps(n=2)\to e^- + {\overline H}(n\le 2)\) reaction,” Phys. Rev. Lett., 88, 063401, 4 pp. (2002).

    Article  ADS  Google Scholar 

  11. M. Valdes, M. Dufour, R. Lazauskas, and P.-A. Hervieux, “Ab initio calculations of scattering cross sections of the three-body system \(({\bar p}, e^+ ,e^-)\) between the \(e^-+\overline{H}(n = 2)\) and \(e^-+\overline{H}(n=3)\) thresholds,” Phys. Rev. A, 97, 012709, 12 pp. (2018).

    Article  ADS  Google Scholar 

  12. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, and S. L. Yakovlev, “High resolution calculations of low energy scattering in \(e^- e^+ p^-\) and \(e^+e^-\mathrm{He}^{++}\) systems via Faddeev–Merkuriev equations,” J. Phys. B: At. Mol. Opt. Phys., 52, 055202, 13 pp. (2019).

    Article  ADS  Google Scholar 

  13. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, and S. L. Yakovlev, “Solving the Faddeev– Merkuriev equations in total orbital momentum representation via spline collocation and tensor product preconditioning,” Commun. Comput. Phys., 30, 255–287 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, and S. L. Yakovlev, “Theoretical study of reactions in the \(e^-e^+\bar{p}\) three body system and antihydrogen formation cross sections,” JETP Lett., 114, 11–17 (2021).

    Article  ADS  Google Scholar 

  15. L. H. Thomas, “The interaction between a neutron and a proton and the structure of H\(^3\),” Phys. Rev., 47, 903–909 (1935).

    Article  ADS  MATH  Google Scholar 

  16. V. N. Efimov, “Weakly-bound states of three resonantly-interacting particles,” Soviet J. Nucl. Phys., 12, 589–595 (1971).

    Google Scholar 

  17. O. I. Kartavtsev and A. V. Malykh, “Minlos–Faddeev regularization of zero-range interactions in the three-body problem,” JETP Lett., 116, 179–184 (2022).

    Article  ADS  Google Scholar 

  18. V. V. Pupyshev, “Three-particle problem with pairwise interactions inversely proportional to squared distance,” Theoret. and Math. Phys., 128, 1061–1077 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Rosenberg, “Multichannel effective-range theory with long-range interactions,” Phys. Rev. A, 57, 1862–1869 (1998).

    Article  ADS  Google Scholar 

  20. V. De Alfaro and T. Regge, Potential Scattering, John Wiley & Sons, New York (1965).

    MATH  Google Scholar 

  21. S. L. Yakovlev, M. V. Volkov, E. Yarevsky, and N. Elander, “The impact of sharp screening on the Coulomb scattering problem in three dimensions,” J. Phys. A: Math. Theor., 43, 254302, 14 pp. (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. V. Volkov, S. L. Yakovlev, E. A. Yarevsky, and N. Elander, “Potential splitting approach to multichannel Coulomb scattering: The driven Schrödinger equation formulation,” Phys. Rev. A, 83, 032722, 12 pp. (2011).

    Article  ADS  Google Scholar 

  23. E. Yarevsky, S. L. Yakovlev, Å. Larson, and N. Elander, “Potential-splitting approach applied to the Temkin–Poet model for electron scattering off the hydrogen atom and the helium ion,” J. Phys. B: At. Mol. Opt. Phys., 48, 115002, 8 pp. (2015).

    Article  ADS  Google Scholar 

  24. M. V. Volkov, E. A. Yarevsky, and S. L. Yakovlev, “Potential splitting approach to the three- body Coulomb scattering problem,” Euro Phys. Lett., 110, 30006, 6 pp. (2015).

    Article  ADS  Google Scholar 

  25. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series, Vol. 55), Dover, New York (1972).

    Google Scholar 

Download references

Funding

This work was carried out within the framework of the Russian Science Foundation project No. 23-22-00109 using the equipment of the Resource Center “Computer Center of Saint-Petersburg State University” (http://cc.spbu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Yakovlev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 416–429 https://doi.org/10.4213/tmf10568.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradusov, V.A., Yakovlev, S.L. On the scattering problem for a potential decreasing as the inverse square of distance. Theor Math Phys 217, 1777–1787 (2023). https://doi.org/10.1134/S0040577923110120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923110120

Keywords

Navigation