Skip to main content
Log in

Scaling violation and the appearance of mass in scalar quantum field theories

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In massless quantum field theories, scale invariance is violated in logarithmic dimensions. We discuss options for interpreting this effect as spontaneous mass emergence in the framework of skeleton self-consistency equations with the full propagator in the \(\varphi^3\), \(\varphi^4\), and \(\varphi^6\) models of a scalar field \(\varphi\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Wilson and J. Kogut, “The renormalization group and the \(\epsilon\)-expansion,” Phys. Rep., 12, 75–199 (1974).

    Article  ADS  Google Scholar 

  2. A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman & Hall/CRC, Boca Raton, FL (2004).

    Book  MATH  Google Scholar 

  3. A. L. Pismensky and Yu. M. Pis’mak, “Scaling violation in massless scalar quantum field models in logarithmic dimensions,” J. Phys. A: Math. Theor., 48, 325401, 25 pp. (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Kubo, M. Lindner, K. Schmitz, and M. Yamada, “Planck mass and inflation as consequences of dynamically broken scale invariance,” Phys. Rev. D, 100, 015037, 17 pp. (2019); arXiv: 1811.05950.

    Article  MathSciNet  ADS  Google Scholar 

  5. E. M. Chudnovskii, “Spontaneous breaking of conformal invariance and the Higgs mechanism,” Theoret. and Math. Phys., 35, 538–540 (1978).

    Article  ADS  Google Scholar 

  6. I. V. Kharuk, “Emergent Planck mass and dark energy from affine gravity,” Theoret. and Math. Phys., 209, 1423–1436 (2021); arXiv: 2002.12178.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. G. Vitiello, “Topological defects, fractals and the structure of quantum field theory,” arXiv: 0807.2164.

  8. C. De Dominicis, “Variational formulations of equilibrium statistical mechanics,” J. Math. Phys., 3, 983–1002 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. De Dominicis and P. C. Martin, “Stationary entropy principle and renormalization in normal and superfluid systems. I. Algebraic formulation,” J. Math. Phys., 5, 14–30 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  10. C. De Dominicis and P. C. Martin, “Stationary entropy principle and renormalization in normal and superfluid systems. II. Diagrammatic formulation,” J. Math. Phys., 5, 31–59 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. Yu. M. Pis’mak, “Proof of the 3-irreducibility of the third Legendre transform,” Theoret. and Math. Phys., 18, 211–218 (1974).

    Article  ADS  Google Scholar 

  12. A. N. Vasil’ev, A. K. Kazanskii, and Yu. M. Pis’mak, “Equations for higher Legendre transforms in Theoret. and Math. Phys.,”, 19, 443–453 (1974).

    Article  ADS  Google Scholar 

  13. A. N. Vasil’ev, A. K. Kazanskii, and Yu. M. Pis’mak, “Diagrammatic analysis of the fourth Legendre transform,” Theoret. and Math. Phys., 20, 754–762 (1974).

    Article  ADS  Google Scholar 

  14. Yu. M. Pis’mak, “Combinatorial analysis of the overlapping problem for vertices with more than four legs,” Theoret. and Math. Phys., 24, 649–658 (1975).

    Article  MATH  ADS  Google Scholar 

  15. Yu. M. Pis’mak, “Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms,” Theoret. and Math. Phys., 24, 755–767 (1975).

    Article  MATH  ADS  Google Scholar 

  16. A. N. Vasil’ev, Yu. M. Pis’mak, and Yu. R. Khonkonen, “Simple method of calculating the critical indices in the \(1/n\) expansion,” Theoret. and Math. Phys., 46, 104–113 (1981).

    Article  ADS  Google Scholar 

  17. A. N. Vasil’ev, Yu. M. Pis’mak, and Yu. R. Khonkonen, “\(1/n\) Expansion: Calculation of the exponents \(\eta\) and \(\nu\) in the order \(1/n^2\) for arbitrary number of dimensions,” Theoret. and Math. Phys., 47, 465–475 (1981).

    Article  ADS  Google Scholar 

  18. A. N. Vasil’ev, Yu. M. Pis’mak, and Yu. R. Khonkonen, “\(1/n\) expansion: clculation of the exponent \(\eta\) in the order \(1/n^3\) by the conformal bootstrap method,” Theoret. and Math. Phys., 50, 127–134 (1982).

    Article  ADS  Google Scholar 

  19. Yu. M. Pis’mak and A. L. Pismensky, “Self-consistency equations for composite operators in models of quantum field theory,” Symmetry, 15, 132, 19 pp. (2023).

    Article  ADS  Google Scholar 

  20. V. A. Fok, Fundamentals of Quantum Mechanics, Mir, Moscow (1978).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, New York (1973).

    Google Scholar 

  22. A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics, Gordon and Breach, Amsterdam (1998).

    MATH  Google Scholar 

  23. P. Ramond, Field Theory: A Modern Primer (Frontiers in Physics, Vol. 74), Addison-Wesley, Redwood City, CA (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Pismensky.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 86–97 https://doi.org/10.4213/tmf10477.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pismensky, A.L., Pismak, Y.M. Scaling violation and the appearance of mass in scalar quantum field theories. Theor Math Phys 217, 1495–1504 (2023). https://doi.org/10.1134/S0040577923100069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923100069

Keywords

Navigation