Skip to main content
Log in

Noether charge, thermodynamics and phase transition of a black hole in the Schwarzschild– anti-de Sitter–Beltrami spacetime

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the thermodynamic properties and Hawking–Page phase transition of a black hole in the Schwarzschild–anti-de Sitter–Beltrami (SAdSB) spacetime. We discuss the Beltrami, or inertial, coordinates of the anti-de Sitter (AdS) spacetime. A transformation between noninertial and inertial coordinates of the AdS spacetime is formulated in order to construct a solution of a spherical gravitating mass and other physical quantities. The Killing vector is determined and used to calculate the event horizon radius of this black hole. The SAdSB black hole entropy and temperature are determined by the Noether charge method; the temperature is shown to be bounded by the AdS radius. Similarly, the Smarr relation and the first law of black hole thermodynamics for the SAdSB spacetime are formulated. The Gibbs free energy and heat capacity of this black hole are calculated and the phase transition between small and large black holes is considered. A first-order phase transition between the thermal AdS spacetime and the large-black-hole phase is also investigated and the Hawking–Page temperature is computed and compared with that of the Schwarzschild-anti-de Sitter black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D, 7, 2333–2346 (1973).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett., 26, 1344–1346 (1971).

    Article  ADS  Google Scholar 

  3. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys., 43, 199–220 (1975); “Erratum,” 46, 206 (1976).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. J. M. Bardeen, B. Carter, and S. W. Hawking, “The four laws of black hole mechanics,” Commun. Math. Phys., 31, 161–170 (1973).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. S. W. Hawking, “Black holes and thermodynamics,” Phys. Rev. D, 13, 191–197 (1976).

    Article  ADS  Google Scholar 

  6. R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D, 48, R3427–R3431 (1993); arXiv: gr-qc/9307038.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. V. Iyer and R. M. Wald, “Some properties of the Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D, 50, 846–864 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Jacobson, G. Kang, and R. C. Myers, “On black hole entropy,” Phys. Rev. D, 49, 6587–6598 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  9. V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Fundamental Theories of Physics, Vol. 96), Kluwer, Dordrecht (1998).

    MATH  Google Scholar 

  10. S. Dutta and R. Gopakumar, “Euclidean and Noetherian entropies in AdS space,” Phys. Rev. D, 74, 044007, 16 pp. (2006).

    Article  MathSciNet  ADS  Google Scholar 

  11. F. Kottler, “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie,” Ann. Phys., 361, 401–462 (1918).

    Article  MATH  Google Scholar 

  12. S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-De Sitter space,” Commun. Math. Phys., 87, 577–588 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Maldacena, “The large-\(N\) limit of superconformal field theories and supergravity,” Internat. J. Theor. Phys., 38, 1113–1133 (1999); arXiv: hep-th/9711200.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv: hep-th/9802150; “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” 2, 505–532 (1998); arXiv: hep-th/9803131.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large \(N\) field theories, string theory and gravity,” Phys. Rep., 323, 183–386 (2000); arXiv: hep-th/9905111.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the mechanics of AdS black holes,” Class. Quantum Grav., 26, 195011, 16 pp. (2009); arXiv: 0904.2765.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. B. P. Dolan, “Where is the PdV in the first law of black hole thermodynamics?,” in: Open Questions in Cosmology (G. J. Olmo, ed., IntechOpen Book Series), IntechOpen (2012), pp. 291–315; arXiv: 1209.1272.

    Google Scholar 

  18. D. Kubizňák and R. B. Mann, “\(P-V\) criticality of charged AdS black holes,” JHEP, 07, 033, 24 pp. (2012); arXiv: 1205.0559.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. D. Kubizňák, R. B. Mann, and M. Teo, “Black hole chemistry: thermodynamics with lambda,” Class. Quantum Grav., 34, 063001, 66 pp. (2017); arXiv: 1608.06147.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. P. Wang, H. Wu, H. Yang, and F. Yao, “Extended phase space thermodynamics for black holes in a cavity,” JHEP, 09, 154, 18 pp. (2020); arXiv: 2006.14349.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. C. V. Johnson, “Holographic heat engines,” Class. Quantum Grav., 31, 205002 (2014); arXiv: 1404.5982.

    Article  MATH  ADS  Google Scholar 

  22. B. P. Dolan, “Bose condensation and branes,” JHEP, 10, 179, 7 pp. (2014); arXiv: 1406.7267.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. B. P. Dolan, “Pressure and compressibility of conformal field theories from the AdS/CFT correspondence,” Entropy, 18, 169, 14 pp. (2016); arXiv: 1603.06279.

    Article  ADS  Google Scholar 

  24. V. G. Czinner and H. Iguchi, “Rényi entropy and the thermodynamic stability of black holes,” Phys. Lett. B, 752, 306–310 (2016); arXiv: 1511.06963.

    Article  ADS  Google Scholar 

  25. V. G. Czinner and H. Iguchi, “Thermodynamics, stability and Hawking–Page transition of Kerr black holes from Rényi statistics,” Eur. Phys. J. C, 77, 892, 18 pp. (2017); arXiv: 1702.05341.

    Article  ADS  Google Scholar 

  26. C. Promsiri, E. Hirunsirisawat, and W. Liewrian, “Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Rényi statistics,” Phys. Rev. D, 102, 064014, 15 pp. (2020); arXiv: 2003.12986.

    Article  MathSciNet  ADS  Google Scholar 

  27. C. Promsiri, E. Hirunsirisawat, and W. Liewrian, “Solid-liquid phase transition and heat engine in an asymptotically flat Schwarzschild black hole via the Rényi extended phase space approach,” Phys. Rev. D, 104, 064004, 15 pp. (2021).

    Article  ADS  Google Scholar 

  28. C. Promsiri, E. Hirunsirisawat, and R. Nakarachinda, “Emergent phase, thermodynamic geometry, and criticality of charged black holes from Rényi statistics,” Phys. Rev. D, 105, 124049, 22 pp. (2022); arXiv: 2204.13023.

    Article  ADS  Google Scholar 

  29. L. Tannukij, P. Wongjun, E. Hirunsirisawat, T. Deesuwan, and C. Promsiri, “Thermodynamics and phase transition of spherically symmetric black hole in de Sitter space from Rényi statistics,” Eur. Phys. J. Plus, 135, 500, 17 pp. (2020); arXiv: 2002.00377.

    Article  Google Scholar 

  30. D. Samart and P. Channuie, “AdS to dS phase transition mediated by thermalon in Einstein– Gauss–Bonnet gravity from Rényi statistics,” Nucl. Phys. B, 989, 16, 116140 pp. (2023); arXiv: 2012.14828.

    Article  MATH  Google Scholar 

  31. R. Nakarachinda, E. Hirunsirisawat, L. Tannukij, and P. Wongjun, “Effective thermodynamical system of Schwarzschild–de Sitter black holes from Rényi statistics,” Phys. Rev. D, 104, 064003, 21 pp. (2021); arXiv: 2106.02838.

    Article  ADS  Google Scholar 

  32. H.-Y. Guo, C.-G. Huang, Z. Xu, and B. Zhou, “On Beltrami model of de Sitter spacetime,” Modern Phys. Lett. A, 19, 1701–1709 (2004); arXiv: hep-th/0311156.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. M.-L. Yan, N.-C. Xiao, W. Huang, and S. Li, “Hamiltonian formalism of the de-Sitter invariant special relativity,” Commun. Theor. Phys., 48, 27–36 (2007); arXiv: hep-th/0512319.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. H.-Y. Guo, “Special relativity and theory of gravity via maximum symmetry and localization,” Sci. China Ser. A, 51, 568–603 (2008); arXiv: 0707.3855.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. N. Manida, “Generalized relativistic kinematics,” Theoret. and Math. Phys., 169, 1643–1655 (2011); arXiv: 1111.3676.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. M.-L. Yan, De Sitter Invariant Special Relativity, World Sci., Singapore (2015).

    Book  MATH  Google Scholar 

  37. T. Angsachon, S. N. Manida, and M. E. Chaikovskii, “Conservation laws for classical particles in anti-de Sitter–Beltrami space,” Theoret. and Math. Phys., 176, 843–850 (2013); arXiv: 1812.01381.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. H.-Y. Guo, C.-G. Huang, and B. Zhou, “Temperature at horizon in de Sitter spacetime,” Europhys. Lett., 72, 1045–1051 (2005); arXiv: hep-th/0404010.

    Article  ADS  Google Scholar 

  39. T. Angsachon and S. N. Manida, “Schwarzschild solution in \(R\)-space,” Bulletin of St. Petersburg State University. Ser. 4. Physics, Chemistry, 2, 14–19 (2013); arXiv: 1301.4198.

    Google Scholar 

  40. L.-F. Sun, M.-L. Yan, Y. Deng, W. Huang, and S. Hu, “Schwarzschild–de Sitter metric and inertial Beltrami coordinates,” Modern Phys. Lett. A, 28, 1350114, 19 pp. (2013); arXiv: 1308.5222.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. H. Liu and X.-H. Meng, “Thermodynamics of Schwarzschild–Beltrami–de Sitter black hole,” Modern Phys. Lett. A, 32, 1750146, 18 pp. (2017); arXiv: 1611.03604.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. M. Urano, A. Tomimatsu, and H. Saida, “The mechanical first law of black hole spacetimes with cosmological constant and its application to Schwarzschild–de Sitter spacetime,” Class. Quantum Grav., 26, 105010, 14 pp. (2009); arXiv: 0903.4230.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. B. P. Dolan, “Vacuum energy and the latent heat of AdS–Kerr black holes,” Phys. Rev. D, 90, 084002, 8 pp. (2014); arXiv: 1407.4037.

    Article  ADS  Google Scholar 

  44. P. Basu, C. Krishnan, and P. N. Bala Subramanian, “Hairy black holes in a box,” JHEP, 11, 041, 23 pp. (2016); arXiv: 1609.01208.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Li and J. Wang, “Thermodynamics and kinetics of Hawking–Page phase transition,” Phys. Rev. D, 102, 024085, 16 pp. (2020).

    Article  MathSciNet  ADS  Google Scholar 

  46. R. André, J. P. S. Lemos, “Thermodynamics of five-dimensional Schwarzschild black holes in the canonical ensemble,” Phys. Rev. D, 102, 024006, 12 pp. (2020).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank C. Promsiri, S. Ponglertsakul, and S. N. Manida for the helpful discussions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Angsachon.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 3–18 https://doi.org/10.4213/tmf10407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angsachon, T., Ruenearom, K. Noether charge, thermodynamics and phase transition of a black hole in the Schwarzschild– anti-de Sitter–Beltrami spacetime. Theor Math Phys 217, 1423–1436 (2023). https://doi.org/10.1134/S004057792310001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792310001X

Keywords

Navigation