Skip to main content
Log in

Resonant Breit–Wheeler process in a strong electromagnetic field

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We theoretically study the Breit–Wheeler resonant process modified by a strong electromagnetic field represented as a plane monochromatic wave. The resonant kinematics of the process is studied in detail. It is shown that the energy of final particles (electron and positron) depends on two factors, the electron (positron) outgoing angle and the typical quantum parameters of the Compton effect and Breit–Wheeler process stimulated by the external field. The resonant differential cross section is obtained in the absence of the interference of reaction channels. It is shown that the resonant differential cross section can exceed the corresponding differential cross section of the Breit–Wheeler process in the absence of the external field by six orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys., 84, 1177–1228 (2012).

    Article  ADS  Google Scholar 

  2. S. Augustin and C. Müller, “Interference effects in Bethe–Heitler pair creation in a bichromatic laser field,” Phys. Rev. A, 88, 022109, 12 pp. (2013).

    Article  ADS  Google Scholar 

  3. A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Resonant electron-atom bremsstrahlung in an intense laser field,” Phys. Rev. A, 89, 023407, 16 pp. (2014).

    Article  ADS  Google Scholar 

  4. A. A. Mironov, S. Meuren, and A. M. Fedotov, “Resummation of QED radiative corrections in a strong constant crossed field,” Phys. Rev. D, 102, 053005, 18 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Di Piazza and T. Pătuleanu, “Electron mass shift in an intense plane wave,” Phys. Rev. D, 104, 076003, 11 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Heinzl and A. Ilderton, “Exact classical and quantum dynamics in background electromagnetic fields,” Phys. Rev. Lett., 118, 113202, 5 pp. (2017).

    Article  ADS  Google Scholar 

  7. S. Bragin and A. Di Piazza, “Electron-positron annihilation into two photons in an intense plane-wave field,” Phys. Rev. D, 102, 116012, 23 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Zhang, S. S. Bulanov, D. Seipt, A. V. Arefiev, and A. G. R. Thomas, “Relativistic plasma physics in supercritical fields,” Phys. Plasmas, 27, 050601, 15 pp. (2020).

    Article  ADS  Google Scholar 

  9. T. Heinzl, A. Ilderton, and B. King, “Classical resummation and breakdown of strong-field QED,” Phys. Rev. Lett., 127, 061601, 6 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Podszus and A. Di Piazza, “First-order strong-field QED processes including the damping of particle states,” Phys. Rev. D, 104, 016014, 16 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  11. D. L. Burke, R. C. Field, G. Horton-Smith et al., “Positron production in multiphoton light-by-light scattering,” Phys. Rev. Lett., 79, 1626–1629 (1997).

    Article  ADS  Google Scholar 

  12. C. Bamber, S. J. Boege, T. Koffas et al., “Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses,” Phys. Rev. D, 60, 092004, 43 pp. (1999).

    Article  ADS  Google Scholar 

  13. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys., 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  14. F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, “Fundamental processes of quantum electrodynamics in laser fields of relativistic power,” Rep. Prog. Phys., 72, 046401, 38 pp. (2009).

    Article  ADS  Google Scholar 

  15. R. Kanya, Y. Morimoto, and K. Yamanouchi, “Observation of laser-assisted electron-atom scattering in femtosecond intense laser fields,” Phys. Rev. Lett., 105, 123202, 4 pp. (2010).

    Article  ADS  Google Scholar 

  16. A. Hartin, “Strong field QED in lepton colliders and electron/laser interactions,” Internat. J. Modern Phys. A, 33, 1830011, 51 pp. (2018).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Magnusson, A. Gonoskov, M. Marklund, T. Zh. Esirkepov, J. K. Koga, K. Kondo, M. Kando, S. V. Bulanov, G. Korn, and S. S. Bulanov, “Laser-particle collider for multi-GeV photon production,” Phys. Rev. Lett., 122, 254801, 6 pp. (2019).

    Article  ADS  Google Scholar 

  18. A. Gonoskov, T. G. Blackbur, M. Marklund, and S. S. Bulanov, “Charged particle motion and radiation in strong electromagnetic fields,” Rev. Modern Phys., 94, 045001, 63 pp. (2022).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Karbstein, D. Ullmann, E. A. Mosman, and M. Zepf, “Direct accessibility of the fundamental constants governing light-by-light scattering,” Phys. Rev. Lett., 129, 061802, 6 pp. (2022).

    Article  ADS  MathSciNet  Google Scholar 

  20. O. Borysov, B. Heinemann, A. Ilderton, B. King, and A. Potylitsyn, “Using nonlinear Breit– Wheeler to test nonlinear vacuum birefringence,” arXiv: 2209.12908.

  21. A. Mercuri-Baron, M. Grech, F. Niel, A. Grassi, M. Lobet, A. Di Piazza, and C. Riconda, “Impact of the laser spatio-temporal shape on Breit–Wheeler pair production,” New J. Phys., 23, 085006, 23 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. J. MacLeod, P. Hadjisolomou, T. M. Jeong, and S. V. Bulanov, “All-optical nonlinear Breit– Wheeler pair production with \(\gamma\)-flash photons,” Phys. Rev. A, 107, 012215, 12 pp. (2023).

    Article  ADS  Google Scholar 

  23. V. P. Oleinik, “Resonance effects in the field of an intense laser beam,” Sov. Phys. JETP, 25, 697–708 (1967).

    Google Scholar 

  24. V. P. Oleinik, “Resonance effects in the field of an intense laser ray. II,” Sov. Phys. JETP, 26, 1132–1138 (1968).

    ADS  Google Scholar 

  25. S. P. Roshchupkin, “Resonant effects in collisions of relativistic electrons in the field of a light wave,” Laser Phys., 6, 837–858 (1996).

    Google Scholar 

  26. S. P. Roshchupkin, A. A. Lebed’, E. A. Padusenko, and A. I. Voroshilo, “Quantum electrodynamics resonances in a pulsed laser field,” Laser Phys., 22, 1113–1144 (2012).

    Article  ADS  Google Scholar 

  27. S. P. Roshchupkin and A. I. Voroshilo, Resonant and Coherent Effects of Quantum Electrodynamics in the Light Field, Naukova Dumka, Kiev (2008).

    Google Scholar 

  28. S. P. Roshchupkin and A. A. Lebed’, Effects of Quantum Electrodynamics in the Strong Pulsed Laser Fields, Naukova Dumka, Kiev (2013).

    Google Scholar 

  29. D. V. Doroshenko, V. V. Dubov, and S. P. Roshchupkin, “Resonant annihilation and production of high-energy electron–positron pairs in an external electromagnetic field,” Modern Phys. Lett. A, 35, 2040023, 4 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  30. S. P. Roshchupkin, N. R. Larin, and V. V. Dubov, “Resonant effect of the ultrarelativistic electron–positron pair production by gamma quanta in the field of a nucleus and a pulsed light wave,” Laser Phys., 31, 045301, 17 pp. (2021).

    Article  ADS  Google Scholar 

  31. S. P. Roshchupkin, A. V. Dubov, and V. V. Dubov, “Resonant spontaneous bremsstrahlung in the scattering of ultrarelativistic electrons on nuclei in a strong light field,” J. Phys.: Conf. Ser., 2249, 012003, 6 pp. (2022).

    Google Scholar 

  32. G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev., 46, 1087–1091 (1934).

    Article  ADS  MATH  Google Scholar 

  33. I. V. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Russ. Laser. Res., 6, 497–617 (1985).

    Article  Google Scholar 

  34. D. Yu. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in \(e_+e_-\) pair production by a photon in the field of a strong laser wave,” Eur. Phys. J. C, 40, 27–40 (2005).

    Article  ADS  Google Scholar 

  35. K. Krajewska and J. Z. Kaminski, “Breit–Wheeler process in intense short laser pulses,” Phys. Rev. A, 86, 052104, 12 pp. (2012).

    Article  ADS  Google Scholar 

  36. V. M. Katkov, “Production of a pair by a polarized photon in a uniform constant electromagnetic field,” JETP, 114, 226–233 (2012).

    Article  ADS  Google Scholar 

  37. A. I. Titov, H. Takabe, and B. Kämpfer, “Nonlinear Breit–Wheeler process in short laser double pulses,” Phys. Rev. D, 98, 036022, 9 pp. (2018).

    Article  ADS  Google Scholar 

  38. D. Seipt and B. King, “Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit–Wheeler processes,” Phys. Rev. A, 102, 052805, 22 pp. (2020).

    Article  ADS  Google Scholar 

  39. A. I. Titov and B. Kämpfer, “Non-linear Breit–Wheeler process with linearly polarized beams,” Eur. Phys. J. D, 74, 218, 9 pp. (2020).

    Article  ADS  Google Scholar 

  40. S. Tang, “Fully polarized nonlinear Breit–Wheeler pair production in pulsed plane waves,” Phys. Rev. D, 105, 056018, 17 pp. (2022).

    Article  ADS  MathSciNet  Google Scholar 

  41. T. G. Blackburn and B. King, “Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses,” Eur. Phys. J. C, 82, 44, 16 pp. (2022).

    Article  ADS  Google Scholar 

  42. A. A. Pustyntsev, V. V. Dubov, and S. P. Roshchupkin, “Resonant Breit–Wheeler process in an external electromagnetic field,” Modern Phys. Lett. A, 35, 2040027, 4 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  43. V. D. Serov, S. P. Roshchupkin, and V. V. Dubov, “Resonant effect for Breit–Wheeler process in the field of an X-ray pulsar,” Universe, 6, 190, 11 pp. (2020).

    Article  ADS  Google Scholar 

  44. S. P. Roshchupkin, V. V. Dubov, A. V. Dubov, D. V. Doroshenko, N. R. Larin, G. K. Sizykh, and V. D. Serov, “Resonant production of high-energy electron–positron pairs and gamma quanta in the quantum electrodynamics processes in strong laser fields,” in: High Power Lasers and Applications (Proceedings of SPIE, Vol. 11777, J. Hein, T. J. Butcher, P. Bakule, C. L Haefner, G. Korn, L. O. Silva, eds.), SPIE Press, Bellingham, WA (2021), pp. 40–55.

    Google Scholar 

  45. V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Russ. Laser. Res., 6, 497–617 (1985); A. I. Nikishov, “Problems of intense external-field intensity in quantum electrodynamics,” 619–717.

    Article  Google Scholar 

  46. D. M. Volkov, “On a class of solutions of the Dirac equation,” Z. Phys., 94, 250–260 (1935).

    ADS  Google Scholar 

  47. H. Wang, M. Zhong, and L.-F. Gan, “Orthonormality of Volkov solutions and the sufficient condition,” Commun. Theor. Phys., 71, 1179–1186 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. V. B. Berestetskii, E. M. Lifshits, and and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics, Pergamon, New York (1982).

    Google Scholar 

  49. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., 82, 664–679 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. L. S. Brown and T. W. B. Kibble, “Interaction of intense laser beams with electrons,” Phys. Rev., 133, A705–A719 (1964).

    Article  ADS  Google Scholar 

  51. S. P. Roshchupkin, V. A. Tsybul’nik, and A. N. Chmirev, “The probability of multiphoton processes in quantum-electrodynamic phenomena in a strong light field,” Laser Phys., 10, 1256–1272 (2000).

    Google Scholar 

Download references

Funding

The research was supported by the Russian Federation Ministry of Education and Science in the framework of the Strategic Academic Leadership Program “Priority 2030” (agreement 075-15-2023-380, February 20, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Serov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 577–589 https://doi.org/10.4213/tmf10449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, V.D., Roshchupkin, S.P. & Dubov, V.V. Resonant Breit–Wheeler process in a strong electromagnetic field. Theor Math Phys 216, 1396–1407 (2023). https://doi.org/10.1134/S0040577923090131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923090131

Keywords

Navigation