Skip to main content
Log in

Dark matter as a gravitational effect in the embedding theory approach

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss a possibility to explain observations usually related to the existence of dark matter by passing from the general relativity (GR) theory to a modified theory of gravity, the embedding theory proposed by Regge and Teitelboim. In this approach, it is assumed that our space–time is a four-dimensional surface in a ten-dimensional flat ambient space. This clear geometric interpretation of a change of a variable in the GR action leading to a new theory distinguishes this approach from the known alternatives: mimetic gravity and other variants. After the passage to the modified theory of gravity, additional solutions that can be interpreted as GR solutions with additional fictitious matter appear besides the solutions corresponding to GR. In that theory, one can try to see dark matter, with no need to assume the existence of dark matter as a fundamental object; its role is played by the degrees of freedom of modified gravity. In the embedding theory, the number of degrees of freedom of fictitious matter is sufficiently large, and hence an explanation of all observations without complicating the theory any further can be attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\Lambda\)-cold dark matter model.

References

  1. J. Silk, “Challenges in cosmology from the Big Bang to dark energy, dark matter and galaxy formation,” JPS Conf. Proc., 14, 010101, 13 pp. (2017); arXiv: 1611.09846.

    Google Scholar 

  2. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, World Sci., Singapore (2011).

    Book  MATH  Google Scholar 

  3. P. Salucci and C. di Paolo, “Fundamental properties of the dark and the luminous matter from low surface brightness discs,” arXiv: 2005.03520.

  4. T. M. Undagoitia and L. Rauch, “Dark matter direct-detection experiments,” J. Phys. G, 43, 013001 (2015); arXiv: 1509.08767.

    Article  Google Scholar 

  5. J. M. Gaskins, “A review of indirect searches for particle dark matter,” Contemp. Phys., 57, 496–525 (2016); arXiv: 1604.00014.

    Article  ADS  Google Scholar 

  6. G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, and F. S. Queiroz, “The waning of the WIMP? A review of models, searches, and constraints,” Eur. Phys. J. C, 78, 203, 57 pp. (2018); arXiv: 1703.07364.

    Article  ADS  Google Scholar 

  7. W. Hu, R. Barkana, and A. Gruzinov, “Fuzzy cold dark matter: the wave properties of ultralight particles,” Phys. Rev. Lett., 85, 1158–1161 (2000); arXiv: astro-ph/0003365.

    Article  ADS  Google Scholar 

  8. S. Tulin and H.-B. Yu, “Dark matter self-interactions and small scale structure,” Phys. Rep., 730, 1–57 (2018); arXiv: 1705.02358.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Del Popolo and M. Le Delliou, “Small scale problems of the \(\Lambda\)CDM model: a short review,” Galaxies, 5, 17, 46 pp. (2017); arXiv: 1606.07790.

    Article  ADS  Google Scholar 

  10. M. Milgrom, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Astrophys. J., 270, 365–370 (1983).

    Article  ADS  Google Scholar 

  11. M. Milgrom, “MOND vs. dark matter in light of historical parallels,” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 71, 170–195 (2020); arXiv: 1910.04368.

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Capozziello and M. De Laurentis, “Extended theories of gravity,” Phys. Rep., 509, 167–321 (2011); arXiv: 1108.6266.

    Article  ADS  MathSciNet  Google Scholar 

  13. A. H. Chamseddine and V. Mukhanov, “Mimetic dark matter,” JHEP, 2013, 135, 5 pp. (2013); arXiv: 1308.5410.

    Article  ADS  Google Scholar 

  14. A. A. Sheykin, D. P. Solovyev, V. V. Sukhanov, and S. A. Paston, “Modifications of gravity via differential transformations of field variables,” Symmetry, 12, 240, 15 pp. (2020); arXiv: 2002.01745.

    Article  ADS  Google Scholar 

  15. D. Clowe, A. Gonzalez, and M. Markevitch, “Weak lensing mass reconstruction of the interacting cluster 1E 0657-558: Direct evidence for the existence of dark matter,” Astrophys. J., 604, 596–603 (2004); arXiv: astro-ph/0312273.

    Article  Google Scholar 

  16. A. Golovnev, “On the recently proposed mimetic Dark Matter,” Phys. Lett. B, 728, 39–40 (2014); arXiv: 1310.2790.

    Article  ADS  MATH  Google Scholar 

  17. S. A. Paston, “Forms of action for perfect fluid in general relativity and mimetic gravity,” Phys. Rev. D, 96, 084059, 8 pp. (2017); arXiv: 1708.03944.

    Article  ADS  MathSciNet  Google Scholar 

  18. A. H. Chamseddine, V. Mukhanov, and A. Vikman, “Cosmology with mimetic matter,” J. Cosmol. Astropart. Phys., 2014, 017 (2014); arXiv: 1403.3961.

    Article  Google Scholar 

  19. L. Mirzagholi and A. Vikman, “Imperfect dark matter,” J. Cosmol. Astropart. Phys., 2015, 028, 20 pp. (2015); arXiv: 1412.7136.

    Article  MathSciNet  Google Scholar 

  20. Sh. Hirano, S. Nishi, and T. Kobayashi, “Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations,” J. Cosmol. Astropart. Phys., 2017, 009 (2017); arXiv: 1704.06031.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Sebastiani, S. Vagnozzi, and R. Myrzakulov, “Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics,” Adv. High Energy Phys., 2017, 3156915, 43 pp. (2017); arXiv: 1612.08661.

    Article  Google Scholar 

  22. T. Regge and C. Teitelboim, “General relativity à la string: a progress report,” in: Proceedings of the First Marcel Grossmann Meeting (Trieste, Italy, 1975, R. Ruffini, ed.), North-Holland, Amsterdam (1977), pp. 77–88; arXiv: 1612.05256.

    Google Scholar 

  23. A. Friedman, “Local isometric imbedding of Riemannian manifolds with indefinite metrics,” J. Math. Mech., 10, 625–649 (1961).

    MathSciNet  MATH  Google Scholar 

  24. S. A. Paston, “Gravity as a field theory in flat space–time,” Theoret. and Math. Phys., 169, 1611–1619 (2011); arXiv: 1111.1104.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. A. Paston and V. A. Franke, “Canonical formulation of the embedded theory of gravity equivalent to Einstein’s general relativity,” Theoret. and Math. Phys., 153, 1582–1596 (2007); arXiv: 0711.0576.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. Pavšič, “On the quantisation of gravity by embedding spacetime in a higher-dimensional space,” Class. Quantum Grav., 2, 869–889 (1985); arXiv: 1403.6316.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Deser, F. A. E. Pirani, and D. C. Robinson, “New embedding model of general relativity,” Phys. Rev. D, 14, 3301–3303 (1976).

    Article  ADS  Google Scholar 

  28. M. D. Maia, “On the integrability conditions for extended objects,” Class. Quantum Grav., 6, 173–183 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. F. B. Estabrook, R. S. Robinson, and H. R. Wahlquist, “Constraint-free theories of gravitation,” Class. Quantum Grav., 16, 911–918 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. D. Karasik and A. Davidson, “Geodetic brane gravity,” Phys. Rev. D, 67, 064012, 17 pp. (2003); arXiv: gr-qc/0207061.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. L. D. Faddeev, “New dynamical variables in Einstein’s theory of gravity,” Theoret. and Math. Phys., 166, 279–290 (2011), arXiv: 0906.4639; “New variables for the Einstein theory of gravitation,” arXiv: 0911.0282; “\(3+1\) decomposition in the new action for the Einstein Theory of Gravitation,” arXiv: 1003.2311.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. A. Sheykin and S. A. Paston, “The approach to gravity as a theory of embedded surface,” AIP Conf. Proc., 1606, 400–406 (2014); arXiv: 1402.1121.

    ADS  Google Scholar 

  33. S. A. Paston and A. N. Semenova, “Constraint algebra for Regge–Teitelboim formulation of gravity,” Internat. J. Theor. Phys., 49, 2648–2658 (2010); arXiv: 1003.0172.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. S. A. Paston and E. N. Semenova, “External time canonical formalism for gravity in terms of embedding theory,” Gravit. Cosmol., 21, 181–190 (2015); arXiv: 1509.01529.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Tapia, “Gravitation à la string,” Class. Quantum Grav., 6, L49–L56 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. V. A. Franke and V. Tapia, “The ADM Lagrangian in extrinsic gravity,” Nuovo Cim. B, 107, 611–630 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. A. Paston, E. N. Semenova, V. A. Franke, and A. A. Sheykin, “Algebra of implicitly defined constraints for gravity as the general form of embedding theory,” Gravit. Cosmol., 23, 1–7 (2017); arXiv: 1705.07361.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Aguilar-Salas, A. Molgado, and E. Rojas, “Hamilton–Jacobi approach for Regge–Teitelboim cosmology,” Class. Quantum Grav., 37, 145003, 21 pp. (2020); arXiv: 2004.01650.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. S. A. Paston and T. I. Zaitseva, “Canonical formulation of embedding gravity in a form of general relativity with dark matter,” Gravit. Cosmol., 29, 153-162 (2023); arXiv: 2207.13654.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. A. Davidson, D. Karasik, and Y. Lederer, “Cold dark matter from dark energy,” arXiv: gr-qc/0111107.

  41. S. A. Paston and A. A. Sheykin, “From the embedding theory to general relativity in a result of inflation,” Internat. J. Modern Phys. D, 21, 1250043, 19 pp. (2012); arXiv: 1106.5212.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Kuptsov, M. Ioffe, S. Manida, and S. Paston, “Weak field limit for embedding gravity,” Universe, 8, 635, 13 pp. (2022); arXiv: 2210.13272.

    Article  ADS  Google Scholar 

  43. M. Pavsic, V. Tapia, “Resource letter on geometrical results for embeddings and branes,” arXiv: gr-qc/0010045.

  44. S. A. Paston and A. A. Sheykin, “Embedding theory as new geometrical mimetic gravity,” Eur. Phys. J. C, 78, 989, 6 pp. (2018); arXiv: 1806.10902.

    Article  ADS  Google Scholar 

  45. S. Paston and T. Zaitseva, “Nontrivial isometric embeddings for flat spaces,” Universe, 7, 477, 14 pp. (2021); arXiv: 2111.04188.

    Article  ADS  Google Scholar 

  46. S. A. Paston, “Dark matter from non-relativistic embedding gravity,” Modern Phys. Lett. A, 36, 2150101, 12 pp. (2021); arXiv: 2006.09026.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. S. Paston, “Non-relativistic limit of embedding gravity as General Relativity with dark matter,” Universe, 6, 163 (2020); arXiv: 2009.06950.

    Article  ADS  Google Scholar 

  48. A. D. Kapustin and S. A. Paston, “Analytical analysis of the origin of core-cusp matter density distributions in galaxies,” J. Cosmol. Astropart. Phys., 2022, 025 (2022); arXiv: 2207.04288.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the organizers of the VII International Conference “Models of quantum field theory” (MQFT-2022) dedicated to the 82th anniversary of Professor Alexandr Nikolaevich Vasil’ev and to the 80th anniversary of Professor Vladimir Dmitrievich Lyakhovski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Paston.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 559–576 https://doi.org/10.4213/tmf10446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paston, S.A. Dark matter as a gravitational effect in the embedding theory approach. Theor Math Phys 216, 1382–1395 (2023). https://doi.org/10.1134/S004057792309012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792309012X

Keywords

Navigation