Skip to main content
Log in

Can the energy of a particle be negative in the absence of external fields?

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the question of conditions for the existence of negative-energy states of particles in the absence of external fields in inertial and noninertial frames of reference. We show that in the nonrelativistic case in noninertial reference frames, there always exist domains where the energy of particles is negative. We also show that in the relativistic case, the existence of negative-energy states of point particles does not lead to violations of the energy dominance condition. We consider conditions for the appearance of negative and zero energies of particles in the Milne universe and Rindler space–time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford (1976).

    MATH  Google Scholar 

  2. R. Penrose, “Gravitational collapse: The role of general relativity,” Rivista Nuovo Cimento, Num. Spec. I, 252–276 (1969).

    ADS  Google Scholar 

  3. D. Christodoulou and R. Ruffini, “Reversible transformations of a charged black hole,” Phys. Rev. D, 4, 3552–3555 (1971).

    Article  ADS  Google Scholar 

  4. A. A. Grib, S. G. Mamayev and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields, Friedmann Lab. Publ., St. Petersburg (1994).

    Google Scholar 

  5. W. G. Unruh, “Notes on black-hole evaporation,” Phys. Rev. D, 14, 870–892 (1976).

    Article  ADS  Google Scholar 

  6. A. A. Grib and Yu. V. Pavlov, “Comparison of particle properties in Kerr metric and in rotating coordinates,” Gen. Rel. Grav., 49, 78, 20 pp. (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).

    Google Scholar 

  8. A. A. Grib and Yu. V. Pavlov, “Static limit and Penrose effect in rotating reference frames,” Theoret. and Math. Phys., 200, 1117–1125 (2019); Erratum, 201, 1541–1541 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys., 43, 199–220 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, Pergamon Press, Oxford (1983).

    Google Scholar 

  11. D. A. Kirzhnitz and V. N. Sazonov, “Superluminal motions and special relativity theory [in Russian],” in: Einsteinovskii Sbornik 1973 (V. L. Ginzburg, ed.), Nauka, Moscow (1974).

    Google Scholar 

  12. G. Feinberg, “Possibility of faster-than-light particles,” Phys. Rev., 159, 1089–1105 (1967).

    Article  ADS  Google Scholar 

  13. A. Yu. Andreev and D. A. Kirzhnits, “Tachyons and the instability of physical systems,” Phys. Usp., 39, 1071–1076 (1996).

    Article  ADS  Google Scholar 

  14. N. N. Bogolyubov and D. V. Shirkov, Quantum Fields, Wiley, New York (1980).

    MATH  Google Scholar 

  15. A. A. Grib and Yu. V. Pavlov, “On phase transitions near black holes,” Jetp Lett., 116, 493–499 (2022).

    Article  Google Scholar 

  16. R. C. Tolman, The Theory of the Relativity of Motion, University of California Press, Berkeley, CA (1917).

    MATH  Google Scholar 

  17. O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, “ ‘Meta’ relativity,” Amer. J. Phys., 30, 718–723 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  18. E. C. G. Stueckelberg, “Remarque à propos de la création de paires de particules en théorie de relativité,” Helv. Phys. Acta., 14, 588–594 (1941).

    MATH  Google Scholar 

  19. R. P. Feynman, “The theory of positrons,” Phys. Rev., 76, 749–759 (1949).

    Article  ADS  MATH  Google Scholar 

  20. E. Recami and R. Mignani, “Classical theory of tachyons (special relativity extended to superluminal frames and objects),” Riv. Nuovo Cim. (1971–1977), 4, 209–290 (1974).

    Article  Google Scholar 

  21. A. A. Grib, “Is it possible to move backward in time? [in Russian],” Priroda, 4, 24–32 (1974).

    Google Scholar 

  22. M. Jammer, The Concepts of Mass in Classical and Modern Physics, Harvard Univ. Press, Cambridge (1961).

    Google Scholar 

  23. H. Bondi, “Negative mass in general relativity,” Rev. Mod. Phys., 29, 423–428 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ya. P. Terletskii, Paradoxes in the Theory of Relativity, Plenum Press, New York (1968).

    Book  Google Scholar 

  25. A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem Book in Relativity and Gravitation, Princeton Univ. Press, Princeton (1975).

    MATH  Google Scholar 

  26. W. B. Bonnor, “Negative mass in general relativity,” Gen. Rel. Grav., 21, 1143–1157 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. A. Shatskii, I. D. Novikov, and N. S. Kardashev, “The Kepler problem and collisions of negative masses,” Phys. Usp., 54, 381–385 (2011).

    Article  ADS  Google Scholar 

  28. S. Chandrasekhar, The Mathematical Theory of Black Holes, (International Series of Monographs on Physics, Vol. 69), Oxford Univ. Press, New York (1983).

    MATH  Google Scholar 

  29. I. D. Novikov and V. P. Frolov, Physics of Black Holes (Fundamental Theories of Physics, Vol. 27), Springer, Dordrecht (1989).

    Book  MATH  Google Scholar 

  30. R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett., 11, 237–238 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Ehrenfest, “Uniform rotation of rigid bodies and the theory of relativity,” in: Relativity in Rotating Frames (Fundamental Theories of Physics book series, Vol. 135, G. Rizzi and M. L. Ruggiero, eds.), Kluwer, Boston (2004), pp. 3–4; P. Ehrenfest, “Gleichförmige Rotation starrer Körper und Relativitätstheorie,” Phys. Z., 10, 918–920 (1909).

    Chapter  MATH  Google Scholar 

  32. S. Weinberg, Gravitation and Cosmology: Principles and applications of the general theory of relativity, Wiley, New York (1972).

    Google Scholar 

  33. E. A. Milne, Relativity, Gravitation and World-Structure, Clarendon Press, Oxford (1935).

    MATH  Google Scholar 

  34. Ya. B. Zel’dovich and I. D. Novikov, The Structure and Evolution of the Universe [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  35. G. F. R. Ellis and T. Rothman, “Lost horizons,” Amer. J. Phys., 61, 883–893 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R. N. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. Math. Phys., 8, 265–281 (1967).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1982).

    Book  MATH  Google Scholar 

  38. W. Rindler, “Kruskal space and the uniformly accelerated frame,” Amer. J. Phys., 34, 1174–1178 (1966).

    Article  ADS  Google Scholar 

  39. A. A. Grib and Yu. V. Pavlov, “Particles with negative energies in black holes,” Internat. J. Modern Phys. D, 20, 675–684 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the participants of the MQFT-2022 conference for the discussion of the talk, and D. I. Kazakov for formulating the question that underlies the title of the paper.

Funding

The work was supported by the Russian Science Foundation (grant No. 22-22-00112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Pavlov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 504–518 https://doi.org/10.4213/tmf10453.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grib, A.A., Pavlov, Y.V. Can the energy of a particle be negative in the absence of external fields?. Theor Math Phys 216, 1337–1348 (2023). https://doi.org/10.1134/S0040577923090088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923090088

Keywords

Navigation