Skip to main content
Log in

Strongly intensive variable in the model of high-energy pp interactions with the formation of string clusters

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For high-energy pp scattering described in the framework of a model taking the merger of quark–gluon strings and the formation of string clusters into account, we calculate the strongly intensive variable \(\Sigma\) characterizing correlations between the numbers of particles formed in two rapidity-separated observation intervals. We compare results of the calculations with experimental data of the ALICE collaboration at the Large Hadron Collider. We show that the experimentally observed increase in this variable with increasing initial energy can be explained only if the formation of string clusters consisting of the increasing number of merged strings is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. A. Dumitru, F. Gelis, L. McLerran, and R. Venugopalan, “Glasma flux tubes and the near side ridge phenomenon at RHIC,” Nucl. Phys. A, 810, 91–108 (2008).

    Article  ADS  Google Scholar 

  2. A. B. Kaidalov, “The quark–gluon structure of the pomeron and the rise of inclusive spectra at high energies,” Phys. Lett. B, 116, 459–463 (1982).

    Article  ADS  Google Scholar 

  3. A. Capella, U. Sukhatme, C.-I. Tan, and J. T. Thanh Van, “Dual parton model,” Phys. Rep., 236, 225–329 (1994).

    Article  ADS  Google Scholar 

  4. A. Casher, J. Kogut, and L. Susskind, “Vacuum polarization and the absence of free quarks,” Phys. Rev. D, 10, 732–745 (1974).

    Article  ADS  Google Scholar 

  5. A. Casher, H. Neuberger, and S. Nussinov, “Chromoelectric-flux-tube model of particle production,” Phys. Rev. D, 20, 179–188 (1979).

    Article  ADS  Google Scholar 

  6. M. Gyulassy and A. Iwazaki, “Quark and gluon pair production in \(\mathrm{SU}(N)\) covariant constant fields,” Phys. Lett. B, 165, 157–161 (1985).

    Article  ADS  Google Scholar 

  7. F. Bissey, A. I. Signal, and D. B. Leinweber, “Comparison of gluon flux-tube distributions for quark-diquark and quark-antiquark hadrons,” Phys. Rev. D, 80, 114506, 6 pp. (2009).

    Article  ADS  Google Scholar 

  8. P. Cea, L. Cosmai, F. Cuteri, and A. Papa, “Flux tubes in the QCD vacuum,” Phys. Rev. D, 95, 114511, 9 pp. (2017).

    Article  ADS  Google Scholar 

  9. T. S. Biro, H. B. Nielsen, and J. Knoll, “Colour rope model for extreme relativistic heavy ion collisions,” Nucl. Phys. B, 245, 449–468 (1984).

    Article  ADS  Google Scholar 

  10. A. Bialas and W. Czyz, “Chromoelectric flux tubes and the transverse-momentum distribution in high-energy nucleus-nucleus collisions,” Phys. Rev. D, 31, 198–200 (1985).

    Article  ADS  Google Scholar 

  11. M. A. Braun and C. Pajares, “A probabilistic model of interacting strings,” Nucl. Phys. B, 390, 542–558 (1993).

    Article  ADS  Google Scholar 

  12. C. Bierlich, G. Gustafson, L. Lönnblad, and A. Tarasov, “Effects of overlapping strings in \(pp\) collisions,” JHEP, 2015, 148, 49 pp. (2015).

    Article  Google Scholar 

  13. J. Adam, D. Adamova, M. M. Aggarwal et al. [ALICE Collab.], “Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions,” Nature Phys., 13, 535–539 (2017).

    Article  ADS  Google Scholar 

  14. V. N. Kovalenko, A. M. Puchkov, and G. A. Feofilov, “Production of strange particles in a multi-pomeron exchange model,” Bull. Russ. Acad. Sci. Phys., 80, 966–969 (2016).

    Article  Google Scholar 

  15. N. Armesto, D. A. Derkach, and G. A. Feofilov, “\(p_t\)-multiplicity correlations in a multi- Pomeron- exchange model with string collective effects,” Phys. Atom. Nucl., 71, 2087–2095 (2008).

    Article  ADS  Google Scholar 

  16. V. N. Kovalenko, G. A. Feofilov, A. M. Puchkov, and F. Valiev, “Multipomeron model with collective effects for high-energy hadron collisions,” Universe, 8, 246, 25 pp. (2022).

    Article  ADS  Google Scholar 

  17. M. I. Gorenstein and M. Gaździcki, “Strongly intensive quantities,” Phys. Rev. C, 84, 014904, 5 pp. (2011).

    Article  ADS  Google Scholar 

  18. E. V. Andronov, “Influence of the quark–gluon string fusion mechanism on long-range rapidity correlations and fluctuations,” Theoret. and Math. Phys., 185, 1383–1390 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Erokhin [ALICE Collab.], “Forward-backward multiplicity correlations with strongly intensive observables in \(pp\) collisions,” in: The VIth International Conference on the Initial Stages of High-Energy Nuclear Collisions (IS2021) (Weizmann Institute of Science, 10–15 January, 2021), Saint Petersburg State University, Laboratory of Ultra-High Energy Physics, St. Petersburg (2021), pp. Poster/187; https://indico.cern.ch/ event/ 854124/ contributions/ 4134683/.

    Google Scholar 

  20. S. N. Belokurova and V. V. Vechernin, “Strongly intensive variables and long-range correlations in the model with a lattice in the transverse plane,” Theoret. and Math. Phys., 200, 1094–1109 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Vechernin, “Forward-backward correlations between multiplicities in windows separated in azimuth and rapidity,” Nucl. Phys. A, 939, 21–45 (2015).

    Article  ADS  Google Scholar 

  22. V. Vechernin, “Short- and long-range rapidity correlations in the model with a lattice in transverse plane,” EPJ Web Conf., 191, 04011, 8 pp. (2018).

    Article  Google Scholar 

  23. V. Vechernin and I. Lakomov, “The dependence of the number of pomerons on the impact parameter and the long-range rapidity correlations in \(pp\) collisions,” PoS (Baldin ISHEPP XXI), 173, 072, 12 pp. (2012).

    Google Scholar 

  24. K. A. Ter-Martirosyan, “On the particle multiplicity distributions at high energy,” Phys. Lett. B, 44B, 377–380 (1973).

    Article  ADS  Google Scholar 

  25. A. B. Kaidalov and K. A. Ter-Martirosyan, “Multihadron production at high energies in the model of quark gluon strings [in Russian],” Yad. Fiz., 40, 211–220 (1984).

    Google Scholar 

  26. A. Capella and E. G. Ferreiro, “Charged multiplicities in \(pp\) and \(AA\) collisions at LHC,” Eur. Phys. J. C, 72, 1936, 6 pp. (2012).

    Article  ADS  Google Scholar 

  27. J. Bleibel, L. V. Bravina, and E. E. Zabrodin, “How many of the scaling trends in \(pp\) collisions will be violated at \(\sqrt{{s}_{\mathrm{NN}}}=14\) TeV? Predictions from Monte Carlo quark–gluon string model,” Phys. Rev. D, 93, 114012, 13 pp. (2016).

    Article  ADS  Google Scholar 

  28. V. V. Vechernin and R. S. Kolevatov, “Cellular approach to the description of long-range multiplicity and \(p_t\) correlations in the string fusion model [in Russian],” Vestnik St. Petersburg Univ. Ser. 4 Physics Chemistry, 4, 11–27 (2004).

    Google Scholar 

  29. M. A. Braun, R. S. Kolevatov, C. Pajares, and V. V. Vechernin, “Correlations between multiplicities and average transverse momentum in the percolating color strings approach,” Eur. Phys. J. C, 32, 535–546 (2004).

    Article  ADS  Google Scholar 

  30. M. A. Braun, C. Pajares, and V. V. Vechernin, “Anisotropic flows from colour strings: Monte Carlo simulations,” Nucl. Phys. A, 906, 14–27 (2013).

    Article  ADS  Google Scholar 

  31. M. A. Braun, C. Pajares, and V. V. Vechernin, “Ridge from strings,” Eur. Phys. J. A, 51, 44, 11 pp. (2015); arXiv: 1407.4590.

    Article  ADS  Google Scholar 

  32. M. A. Braun and C. Pajares, “Inplication of percolation of colour strings on multiplicities, correlations and the transverse momentum,” Eur. Phys. J. A, 16, 349–359 (2000); arXiv: hep-ph9907332.

    Google Scholar 

  33. J. Adam, D. Adamova, M. M. Aggarwal et al. [ALICE Collab.], “Forward-backward multiplicity correlations in pp collisions at \(\sqrt{s}= 0.9\), 2.76 and 7 TeV,” JHEP, 2015, 097, 28 pp. (2015); arXiv: 1502.00230.

    Article  Google Scholar 

  34. S. Belokurova, “Study of strongly intense quantities and robust variances in multi-particle production at LHC energies,” Phys. Part. Nucl., 53, 154–158 (2022).

    Article  Google Scholar 

  35. E. Andronov and V. Vechernin, “Strongly intensive observable between multiplicities in two acceptance windows in a string model,” Eur. Phys. J. A, 55, 14, 12 pp. (2019); arXiv: 1808.09770.

    Article  ADS  Google Scholar 

  36. S. Belokurova and V. Vechernin, “Using a strongly intense observable to study the formation of quark–gluon string clusters in pp collisions at LHC energies,” Symmetry, 14, 1673, 11 pp. (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the organizers of the VII International Conference “Models of Quantum Field Theory” (MQFT-2022).

Funding

This work was supported by Saint Petersburg State University (grant No. 94031112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vechernin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 460–475 https://doi.org/10.4213/tmf10461.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vechernin, V.V., Belokurova, S.N. Strongly intensive variable in the model of high-energy pp interactions with the formation of string clusters. Theor Math Phys 216, 1299–1312 (2023). https://doi.org/10.1134/S0040577923090052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923090052

Keywords

Navigation