Skip to main content
Log in

Influence of quark–gluon string interactions on particle correlations in p+p collisions

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the initial states of p+p interactions and their influence on the correlation and fluctuation observables that are sensitive to them by considering the processes of multipomeron exchange and stretching of color QCD strings. We discuss the full string dynamics, their longitudinal motion due to the deceleration of the string ends, and the transverse motion caused by attraction due to the exchange of sigma mesons with subsequent fusion. We calculate the coefficient of rapidity correlations and the strongly intensive variables constructed for the multiplicity of charged particles, \(N\), and the total transverse momentum \(P_\mathrm{T}\) for inelastic p+p interactions at the energy of \(200\) GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, “Spectrum of charmed quark-antiquark bound states,” Phys. Rev. Lett., 34, 369–372 (1975); Erratum, 36, 1276–1276.

    Article  ADS  Google Scholar 

  2. F. J. Wegner, “Duality in generalized Ising models and phase transitions without local order parameters,” J. Math. Phys., 12, 2259–2272 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  3. K. G. Wilson, “Confinement of quarks,” Phys. Rev. D, 10, 2445–2459 (1974).

    Article  ADS  Google Scholar 

  4. M. Creutz, “Asymptotic-freedom scales,” Phys. Rev. Lett., 45, 313–316 (1980).

    Article  ADS  Google Scholar 

  5. G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B, 72, 461–473 (1974).

    Article  ADS  Google Scholar 

  6. G. Veneziano, “Regge intercepts and unitarity in planar dual models,” Nucl. Phys. B, 74, 365–377 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Veneziano, “Large \(N\) expansion in dual models,” Phys. Lett. B, 52, 220–222 (1974).

    Article  ADS  Google Scholar 

  8. G. Veneziano, “Some aspects of a unified approach to gauge, dual and Gribov theories,” Nucl. Phys. B, 117, 519 (1976).

    Article  ADS  Google Scholar 

  9. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., 82, 664–679 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. X. Artru, “Classical string phenomenology. How strings work,” Phys. Rep., 97, 147–171 (1983).

    Article  ADS  Google Scholar 

  11. A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van, “Jets in small-\(p_\mathrm{T}\) hadronic collisions, universality of quark fragmentation, and rising rapidity plateaus,” Phys. Lett. B, 81, 68–74 (1979).

    Article  ADS  Google Scholar 

  12. A. B. Kaidalov, “The quark–gluon structure of the pomeron and the rise of inclusive spectra at high energies,” Phys. Lett. B, 116, 459–463 (1982).

    Article  ADS  Google Scholar 

  13. V. N. Gribov, “A reggeon diagram technique,” JETP, 26, 414–423 (1968).

    ADS  Google Scholar 

  14. K. Werner, “Strings, pomerons and the VENUS model of hadronic interactions at ultrarelativistic energies,” Phys. Rep., 232, 87–299 (1993).

    Article  ADS  Google Scholar 

  15. M. Zach, M. Faber, and P. Skala, “Flux tubes and their interaction in \(U(1)\) lattice gauge theory,” Nucl. Phys. B, 529, 505 (1998).

    Article  ADS  Google Scholar 

  16. T. Iritani, G. Cossu, and S. Hashimoto, “Analysis of topological structure of the QCD vacuum with overlap-Dirac operator eigenmode,” PoS (LATTICE 2013), 187, 376, 7 pp. (2014).

    Google Scholar 

  17. T. Kalaydzhyan and E. Shuryak, “Self-interacting QCD strings and string balls,” Phys. Rev. D, 90, 025031, 15 pp. (2014).

    Article  ADS  Google Scholar 

  18. T. Kalaydzhyan and E. Shuryak, “Collective interaction of QCD strings and early stages of high-multiplicity \(pA\) collisions,” Phys. Rev. C, 90, 014901, 10 pp. (2014).

    Article  ADS  Google Scholar 

  19. D. E. Kharzeev and F. Loshaj, “Partial restoration of chiral symmetry in a confining string,” Phys. Rev. D, 90, 037501, 5 pp. (2014).

    Article  ADS  Google Scholar 

  20. P. Cea, L. Cosmai, and A. Papa, “Chromoelectric flux tubes and coherence length in QCD,” Phys. Rev. D, 86, 054501, 10 pp. (2012).

    Article  ADS  Google Scholar 

  21. P. Cea, L. Cosmai, F. Cuteri, and A. Papa, “Flux tubes in the \(SU(3)\) vacuum: London penetration depth and coherence length,” Phys. Rev. D, 89, 094505, 7 pp. (2014).

    Article  ADS  Google Scholar 

  22. D. Kharzeev and K. Tuchin, “From color glass condensate to quark–gluon plasma through the event horizon,” Nucl. Phys. A, 753, 316–334 (2005).

    Article  ADS  Google Scholar 

  23. P. Castorina, D. Kharzeev, and H. Satz, “Thermal hadronization and Hawking–Unruh radiation in QCD,” Eur. Phys. J. C, 52, 187–201 (2007).

    Article  ADS  Google Scholar 

  24. V. A. Abramovsky, V. N. Gribov, and O. V. Kancheli, “Character of inclusive spectra and fluctuations produced in inelastic processes by multi-pomeron exchange,” Sov. J. Nucl. Phys., 18, 308–317 (1974).

    Google Scholar 

  25. M. A. Braun and C. Pajares, “Particle production in nuclear collisions and string interactions,” Phys. Lett. B, 287, 154–158 (1992).

    Article  ADS  Google Scholar 

  26. A. Moscoso, C. Andrés, and C. Pajares, “High-density QCD and the new LHC data,” Theoret. and Math. Phys., 176, 937–947 (2013).

    Article  ADS  MATH  Google Scholar 

  27. E. V. Andronov, “Influence of the quark–gluon string fusion mechanism on long-range rapidity correlations and fluctuations,” Theoret. and Math. Phys., 185, 1383–1390 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. A. Braun, J. Dias de Deus, A. S. Hirsch, C. Pajares, R. P. Scharenberg, and B. K. Srivastava, “De-confinement and clustering of color sources in nuclear collisions,” Phys. Rep., 599, 1–50 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  29. B. M. Barbashov and V. V. Nesterenko, The Relativistic String Model in Hadron Physics [in Russian], Energoatomizdat, Moscow (1987).

    Google Scholar 

  30. C. Shen and B. Schenke, “Longitudinal dynamics and particle production in relativistic nuclear collisions,” Phys. Rev. C, 105, 064905, 19 pp. (2022).

    Article  ADS  Google Scholar 

  31. C. Shen and B. Schenke, “Dynamical initial-state model for relativistic heavy-ion collisions,” Phys. Rev. C, 97, 024907, 14 pp. (2018).

    Article  ADS  Google Scholar 

  32. A. Capella and A. Krzywicki, “Unitarity corrections to short-range order: Long-range rapidity correlations,” Phys. Rev. D, 18, 4120–4133 (1978).

    Article  ADS  Google Scholar 

  33. J. Adam, D. Adamova, M. M. Aggarwal et al. [ALICE collab.], “Forward-backward multiplicity correlations in pp collisions at \(\sqrt{s} = 0.9\), 2.76 and 7 TeV,” JHEP, 05, 097, 28 pp. (2015).

    Article  ADS  Google Scholar 

  34. V. V. Vechernin, “Asymptotic behavior of the correlation coefficients of transverse momenta in the model with string fusion,” Theoret. and Math. Phys., 190, 251–267 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. I. Gorenstein and M. Gaździcki, “Strongly intensive quantities,” Phys. Rev. C, 84, 014904, 5 pp. (2011).

    Article  ADS  Google Scholar 

  36. E. Andronov and V. Vechernin, “Strongly intensive observable between multiplicities in two acceptance windows in a string model,” Eur. Phys. J. A, 55, 14, 12 pp. (2019).

    Article  ADS  Google Scholar 

  37. S. N. Belokurova and V. V. Vechernin, “Strongly intensive variables and long-range correlations in the model with a lattice in the transverse plane,” Theoret. and Math. Phys., 200, 1094–1109 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. M. Gazdzicki, M. I. Gorenstein, and M. Mackowiak-Pawlowska, “Normalization of strongly intensive quantities,” Phys. Rev. C, 88, 024907, 9 pp. (2013).

    Article  ADS  Google Scholar 

  39. N. Armesto, D. A. Derkach, and G. A. Feofilov, “\(p_t\)-Multiplicity correlations in a multi-pomeron- exchange model with string collective effects,” Phys. Atom. Nucl., 71, 2087–2095 (2008).

    Article  ADS  Google Scholar 

  40. E. Bodnia, D. Derkach, G. A. Feofilov, V. Kovalenko, and A. Puchkov, “Multi-pomeron exchange model for \(pp\) and \(p\bar{p}\) collisions at ultra-high energy,” PoS (QFTHEP2013), 183, 060 (2014).

    Google Scholar 

  41. E. O. Bodnia, V. N. Kovalenko, A. M. Puchkov, and G. A. Feofilov, “Correlation between mean transverse momentum and multiplicity of charged particles in \(pp\) and \(\bar{p}p\) collisions: From ISR to LHC,” AIP Conf. Proc., 1606, 273–282 (2014).

    Article  ADS  Google Scholar 

  42. E. V. Andronov and V. N. Kovalenko, “Strongly intensive fluctuations between the multiplicity and the total transverse momentum in \(pp\) interactions in the multipomeron exchange approach,” Theoret. and Math. Phys., 200, 1282–1293 (2019).

    Article  ADS  MATH  Google Scholar 

  43. V. Kovalenko, G. Feofilov, A. Puchkov, and F. Valiev, “Multipomeron model with collective effects for high-energy hadron collisions,” Universe, 8, 246, 25 pp. (2022).

    Article  ADS  Google Scholar 

  44. F. Liu, A. Tai, M. Gaździcki, and R. Stock, “On transverse momentum event-by-event fluctuations in string hadronic models,” Eur. Phys. J. C, 8, 649–654 (1999).

    Article  ADS  Google Scholar 

  45. E. G. Ferreiro, F. del Moral, and C. Pajares, “Transverse momentum fluctuations and percolation of strings,” Phys. Rev. C, 69, 034901, 5 pp. (2004).

    Article  ADS  Google Scholar 

  46. M. A. Braun, R. S. Kolevatov, C. Pajares, and V. V. Vechernin, “Correlations between multiplicities and average transverse momentum in the percolating color strings approach,” Eur. Phys. J. C, 32, 535–546 (2004).

    Article  ADS  Google Scholar 

  47. M. A. Braun, C. Pajares, and J. Ranf, “Fusion of strings vs. percolation and the transition to the quark–gluon plasma,” Internat. J. Modern Phys. A, 14, 2689–2704 (1999).

    Article  ADS  Google Scholar 

  48. M. A. Braun, F. del Moral, and C. Pajares, “Percolation of strings and the relativistic energy data on multiplicity and transverse momentum distributions,” Phys. Rev. C, 65, 024907, 4 pp. (2002).

    Article  ADS  Google Scholar 

  49. V. V. Vechernin and S. N. Belokurova, “The strongly intensive observable in \(pp\) collisions at LHC energies in the string fusion model,” J. Phys.: Conf. Ser., 1690, 012088, 7 pp. (2020).

    Google Scholar 

  50. T. Sjöstrand, S. Ask, J. R. Christiansen et al., “An introduction to PYTHIA 8.2,” Comput. Phys. Commun., 191, 159–177 (2015).

    Article  ADS  MATH  Google Scholar 

  51. P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 tune,” Eur. Phys. J. C, 74, 3024, 39 pp. (2014).

    Article  ADS  Google Scholar 

  52. V. Vechernin and S. N. Belokurova, “Short- and long-range rapidity correlations in the model with a lattice in transverse plane,” EPJ Web Conf., 191, 04011, 8 pp. (2018).

    Article  Google Scholar 

  53. G. Feofilov, V. Kovalenko, and A. Puchkov, “Correlation between heavy flavour production and multiplicity in pp and p-Pb collisions at high energy in the multi-pomeron exchange model,” EPJ Web Conf., 171, 18003, 4 pp. (2018).

    Article  Google Scholar 

Download references

Funding

This research was funded by Saint Petersburg State University, Russia (project No. 94031112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Andronov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 417–432 https://doi.org/10.4213/tmf10460.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, E.V., Prokhorova, D.S. & Belousov, A.A. Influence of quark–gluon string interactions on particle correlations in p+p collisions. Theor Math Phys 216, 1265–1277 (2023). https://doi.org/10.1134/S0040577923090027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923090027

Keywords

Navigation