Skip to main content
Log in

The \(p\)-adic Ising model in an external field on a Cayley tree: periodic Gibbs measures

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the generalized Gibbs measures corresponding to the \(p\)-adic Ising model in an external field on the Cayley tree of order two. It is established that if \(p\equiv 1\,( \operatorname{mod}\, 4)\), then there exist three translation-invariant and two \(G_2^{(2)}\)-periodic non-translation-invariant \(p\)-adic generalized Gibbs measures. It becomes clear that if \(p\equiv 3\,( \operatorname{mod}\, 4)\), \(p\neq3\), then one can find only one translation-invariant \(p\)-adic generalized Gibbs measure. Moreover, the considered model also exhibits chaotic behavior if \(|\eta-1|_p<|\theta-1|_p\) and \(p\equiv 1\,( \operatorname{mod}\, 4)\). It turns out that even without \(|\eta-1|_p<|\theta-1|_p\), one could establish the existence of \(2\)-periodic renormalization-group solutions when \(p\equiv 1\,( \operatorname{mod}\, 4)\). This allows us to show the existence of a phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. -O. Georgii, Gibbs Measures and Phase Transitions (De Gruyter Studies in Mathematics, Vol. 9), De Gruyter, Berlin (1988).

    Book  MATH  Google Scholar 

  2. A. N. Kolmogorov, Foundations of the Probability Theory, Chelsey, New York (1956).

    MATH  Google Scholar 

  3. A. Khrennikov, “\(p\)-Adic stochastics and Dirac quantization with negative probabilities,” Internat. J. Theor. Phys., 34, 2423–2433 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Yu. Khrennikov, “On the extension of the von mises frequency approach and Kolmogorov axiomatic approach to the \(p\)-adic probability theory,” Theory Probab. Appl., 40, 371–376 (1995).

    Article  MathSciNet  Google Scholar 

  5. I. V. Volovich, “\(p\)-Adic string,” Class. Quantum Grav., 4, L83–L87 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Albeverio, R. Cianci, and A. Yu. Khrennikov, “\(p\)-Adic valued quantization,” \(p\)-Adic Numbers Ultrametric Anal. Appl., 1, 91–104 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Avetisov, A. H. Bikulov, and S. V. Kozyrev, “Application of \(p\)-adic analysis to models of breaking of replica symmetry,” J. Phys. A: Math. Gen., 32, 8785–8791 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. I. Ya. Aref’eva, B. Dragovich, P. H. Frampton, and I. V. Volovich, “The wave function of the Universe and \(p\)-adic gravity,” Internat. J. Modern Phys. A, 6, 4341–4358 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. Arroyo-Ortiz and W. A. Zúñiga-Galindo, “Construction of \(p\)-adic covariant quantum fields in the framework of white noise analysis,” Rep. Math. Phys., 84, 1–34 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. A. Zúñiga-Galindo, “Eigen’s paradox and the quasispecies model in a non-Archimedean framework,” Phys. A, 602, 127648, 18 pp. (2022).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On \(p\)-adic mathematical physics,” \(p\)-Adic Numbers Ultrametric Anal. Appl., 1, 1–17 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Dragovich, A Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, E. I. Zelenov, “\(p\)-Adic mathematical physics: The first 30 years,” \(p\)-Adic Numbers Ultrametric Anal. Appl., 9, 87–121 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. García-Compeán, E. Y. López, and W. A. Zúñiga-Galindo, “\(p\)-Adic open string amplitudes with Chan–Paton factors coupled to a constant \(B\)-field,” Nucl. Phys. B, 951, 114904, 33 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Yu. Khrennikov, \(p\)-Adic Valued Distributions in Mathematical Physics (Mathematics and Its Applications, Vol. 309), Kluwer, Dordrecht (1994).

    Book  MATH  Google Scholar 

  15. A. Yu. Khrennikov, S. V. Kozyrev, and W. A. Zúñiga-Galindo, Ultrametric Pseudodifferential Equations and Applications (Encyclopedia of Mathematics and its Applications, Vol. 168), Cambridge Univ. Press, Cambridge (2018).

    Book  MATH  Google Scholar 

  16. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics (Series on Soviet and East European Mathematics, Vol. 10), World Sci., Singapore (1994).

    Book  MATH  Google Scholar 

  17. W. A. Zúñiga-Galindo, “Non-Archimedean statistical field theory,” Rev. Math. Phys., 34, 2250022, 41 pp. (2022); arXiv: 2006.05559.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. A. Zúñiga-Galindo and S. M. Torba, “Non-Archimedean Coulomb gases,” J. Math. Phys., 61, 013504, 16 pp. (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Mathematics and Its Applications, Vol. 427), Springer, Dordrecht (1997).

    Book  MATH  Google Scholar 

  20. A. C. M. van Rooij, Non-Archimedean Functional Analysis (Monographs and Textbooks in Pure and Applied Mathematics, Vol. 51), Marcel Dekker, New York (1978).

    MATH  Google Scholar 

  21. A. Yu. Khrennikov, Non-Archimedean Analysis and its Applications [in Russian], Fizmatlit, Moscow (2003).

    MATH  Google Scholar 

  22. A. Yu. Khrennikov, “Generalized probabilities taking values in non-Archimedean fields and topological groups,” Russ. J. Math. Phys., 14, 142–159 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Khrennikov and S. Ludkovsky, “Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields,” Markov Process. Related Fields, 9, 131–162 (2003); arXiv: math/0110305.

    MathSciNet  MATH  Google Scholar 

  24. F. Mukhamedov and O. Khakimov, “Chaos in \(p\)-adic statistical lattice models: Potts model,” in: Advances in Non-Archimedean Analysis and Applications. The \(p\)-adic Methodology in STEAM-H (STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, W. A. Zúñiga-Galindo and B. Toni, eds.), Springer Nature, Cham (2022), pp. 115–165.

    Google Scholar 

  25. R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London (1982).

    MATH  Google Scholar 

  26. T. P. Eggarter, “Cayley trees, the Ising problem, and the thermodynamic limit,” Phys. Rev. B, 9, 2989–2992 (1974).

    Article  ADS  Google Scholar 

  27. O. N. Khakimov, “On \(p\)-adic Gibbs measures for Ising model with four competing interactions,” \(p\)-Adic Numbers Ultrametric Anal. Appl., 5, 194–203 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  28. O. N. Khakimov, “On a generalized \(p\)-adic Gibbs measure for Ising model on trees,” \(p\)-Adic Numbers Ultrametric Anal. Appl., 6, 207–217 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Khamraev and F. M. Mukhamedov, “On \(p\)-adic \(\lambda\)-model on the Cayley tree,” J. Math. Phys., 45, 4025–4034 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. F. Mukhamedov and O. Khakimov, “Translation-invariant generalized \(p\)-adic Gibbs measures for the Ising model on Cayley trees,” Math. Methods Appl. Sci., 44, 12302–12316 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. F. Mukhamedov and O. Khakimov, “On Julia set and chaos in \(p\)-adic Ising model on the Cayley tree,” Math. Phys. Anal. Geom., 20, 23, 14 pp. (2017).

    Article  MathSciNet  MATH  Google Scholar 

  32. M. M. Rahmatullaev, O. N. Khakimov, and A. M. Tukhtaboev, “A \(p\)-adic generalized Gibbs measure for the Ising model on a Cayley tree,” Theoret. and Math. Phys., 201, 1521–1530 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. U. A. Rozikov and O. N. Khakimov, “\(p\)-Adic Gibbs measures and Markov random fields on countable graphs,” Theoret. and Math. Phys., 175, 518–525 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. H. Diao and C. E. Silva, “Digraph representations of rational functions over the \(p\)-adic numbers,” \(p\)-Adic Numbers, Ultametric Anal. Appl., 3, 23–38 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. L. Lapidus, L. Hùng and M. van Frankenhuijsen, “\(p\)-Adic fractal strings of arbitrary rational dimensions and Cantor strings,” \(p\)-Adic Numbers, Ultametric Anal. Appl., 13, 215–230 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Memić, “Sets of minmality of \((1-1)\)-rational functions,” \(p\)-Adic Numbers, Ultametric Anal. Appl., 10, 209–221 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Mukhamedov, “Renormalization method in \(p\)-adic \(\lambda\)-model on the Cayley tree,” Internat. J. Theor. Phys., 54, 3577–3595 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. F. Mukhamedov and O. Khakimov, “Phase transition and chaos: \(p\)-adic Potts model on a Cayley tree,” Chaos Solitons Fractals, 87, 190–196 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. F. Mukhamedov and O. Khakimov, “Chaotic behavior of the \(p\)-adic Potts–Bethe mapping,” Discrete Contin. Dyn. Syst., 38, 231–245 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  40. O. Khakimov and F. Mukhamedov, “Chaotic behavior of the \(p\)-adic Potts-Bethe mapping II,” Ergod. Theory Dyn. Syst., 42, 3433–3457 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Mukhamedov and H. Akin, “On non-Archimedean recurrence equations and their applications,” J. Math. Anal. Appl., 423, 1203–1218 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Le Ny, L. Liao, and U. A. Rozikov, “\(p\)-Adic boundary laws and Markov chains on trees,” Lett. Math. Phys., 110, 2725–2741 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. F. M. Mukhamedov, M. Saburov, and O. N. Khakimov, “On \(p\)-adic Ising–Vannimenus model on an arbitrary order Cayley tree,” J. Stat. Mech., 2015, P05032, 26 pp. (2015).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Rahmatullaev and A. Tukhtabaev, “Non periodic \(p\)-adic generilazed Gibbs measure for the Ising model,” \(p\)-Adic Numbers Ultrametric Anal. Appl., 11, 319–327 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Rakhmatullaev and A. Tukhtabaev, “On periodic \(p\)-adic generalized Gibbs measures for Ising model on a Cayley tree,” Lett. Math. Phys., 112, 112, 18 pp. (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. Mukhamedov, H. Akin, and M. Dogan, “On chaotic behaviour of the \(p\)-adic generalized Ising mapping and its application,” J. Difference Equ. Appl., 23, 1542–1561 (2017).

    MathSciNet  MATH  Google Scholar 

  47. N. Koblitz, \(p\)-Adic Numbers, \(p\)-Adic Analysis, and Zeta-Functions (Graduate Texts in Mathematics, Vol. 58), Springer, New York–Heidelberg (1977).

    Book  MATH  Google Scholar 

  48. F. M. Mukhamedov and O. N. Khakimov, “\(p\)-adic monomial equations and their perturbations,” Izv. Math., 84, 348–360 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  49. U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore (2013).

    Book  MATH  Google Scholar 

  50. F. Mukhamedov, B. Omirov, and M. Saburov, “On cubic equations over \(p\)-adic fields,” Int. J. Number Theory, 10, 1171–1190 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  51. K. H. Rosen, Elementary Number Theory and Its Applications, Addison Wesley, Pearson (2011).

    Google Scholar 

  52. F. Mukhamedov and M. Dogan, “On \(p\)-adic \(\lambda\)-model on the Cayley tree II: Phase transitions,” Rep. Math. Phys., 75, 25–46 (2015).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Mukhamedov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 383–400 https://doi.org/10.4213/tmf10509.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F.M., Rahmatullaev, M.M., Tukhtabaev, A.M. et al. The \(p\)-adic Ising model in an external field on a Cayley tree: periodic Gibbs measures. Theor Math Phys 216, 1238–1253 (2023). https://doi.org/10.1134/S0040577923080123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923080123

Keywords

Navigation