Skip to main content
Log in

A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a Lie algebra \(A_1\) with an arbitrary constant \(\alpha\) that can be used to solve nonisospectral problems. For a given higher-dimensional Lie algebra, we introduce two new classes of higher-dimensional Lie algebras extended by \(A_1\). By solving the extended nonisospectral zero-curvature equations that correspond to nonisospectral problems, we derive several multicomponent nonisospectral hierarchies. For one of them, with the aid of the \(Z^\varepsilon_N\)-trace identity and given the Lax pairs, we obtain the bi-Hamilton structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.-Z. Tu, “The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems,” J. Math. Phys., 30, 330–338 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. W.-X. Ma, “A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction,” Chinese J. Contemp. Math., 13, 79–89 (1992).

    MathSciNet  Google Scholar 

  3. W.-X. Ma and M. Chen, “Hamiltonian and quasi-Hamiltonian structures associated with semi- direct sums of Lie algebras,” J. Phys. A: Math. Gen., 39, 10787–10801 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. X. G. Geng and W.-X. Ma, “A multipotential generalization of the nonlinear diffusion equation,” J. Phys. Soc. Japan, 69, 985–986 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. X.-B. Hu, “A powerful approach to generate new integrable systems,” J. Phys. A, 27, 2497–2514 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Y. F. Zhang, J. Q. Mei, and H. Y. Guan, “A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries,” J. Geom. Phys., 147, 103538, 15 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y.-F. Zhang and H.-W. Tam, “Generation of nonlinear evolution equations by reductions of the self-dual Yang–Mills equations,” Commun. Theor. Phys. (Beijing), 61, 203–206 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Y. F. Zhang, H. W. Tam, and F. K. Guo, “Invertible linear transformations and the Lie algebras,” Commun. Nonlinear Sci. Numer. Simul., 13, 682–702 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Y. F. Zhang and H. Q. Zhang, “A direct method for integrable couplings of TD hierarchy,” J. Math. Phys., 43, 466–472 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. W.-X. Ma, “A simple scheme for generating nonisospectral flows from zero curvature representation,” Phys. Lett. A, 179, 179–185 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  11. W.-X. Ma, “The algebraic structures of isospectral Lax operators and applications to integrable equations,” J. Phys. A: Math. Gen., 25, 5329–5343 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. W.-X. Ma, “Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations,” J. Math. Phys., 33, 2464–2476 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Z. J. Qiao, “Algebraic structure of the operator related to stationary systems,” Phys. Lett. A, 206, 347–358 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Z. J. Qiao, “New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry–Dym spectral problem,” Phys. A, 252, 377–387 (1998).

    Article  MathSciNet  Google Scholar 

  15. W.-X. Ma, “An approach for constructing nonisospectral hierarchies of evolution equations,” J. Phys. A: Math. Gen., 25, L719–L726 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. F. Zhang, W. J. Rui, “A few continuous and discrete dynamical systems,” Rep. Math. Phys., 78, 19–32 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. X.-X. Xu, “An integrable coupling hierarchy of the Mkdv_integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy,” Appl. Math. Comput., 216, 344–353 (2010).

    MathSciNet  MATH  Google Scholar 

  18. X.-H. Zhao, B. Tiao, H.-M. Li, and Y.-J. Guo, “Solitons, periodic waves, breathers and integrability for a non-isospectral and variable-coefficient fifth-order Korteweg–de Vries equation in fluids,” Appl. Math. Lett., 65, 48–55 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. G. Estévz and C. Savdón, “Miura-reciprocal transformations for non-isospectral Camassa– Holm hierarchies in \(2+1\) dimensions,” J. Nonlinear Math. Phys., 20, 552–564 (2013).

    Article  MathSciNet  Google Scholar 

  20. P. G. Estévz, J. D. Lejarreta, and C. Sardón, “Non-isospectral \(1+1\) hierarchies arising from a Camassa– Holm hierarchy in \(2+1\) dimensions,” J. Nonlinear Math. Phys., 18, 9–28 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. H. F. Wang and Y. F. Zhang, “A nonisospectral integrable model of AKNS hierarchy and KN hierarchy, as well as its extended system,” Internat. J. Geom. Methods Modern Phys., 18, 2150156, 17 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  22. K. M. Tamizhmani and M. Lakshmanan, “Complete integrability of the Korteweg–de Vries equation under perturbation around its solution: Lie–Backlund symmetry approach,” J. Phys. A: Math. Gen., 16, 3773–3782 (1983).

    Article  ADS  MATH  Google Scholar 

  23. B. Fuchssteiner, “Coupling of completely integrable systems: The perturbation bundle,” in: Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, UK, July 14–19, 1992, Nato Science Series C, Vol. 413, P. A. Clarkson, ed.), Kluwer, Dordrecht (1993), pp. 125–138.

    Chapter  MATH  Google Scholar 

  24. W.-X. Ma, X.-X. Xu, and Y. F. Zhang, “Semi-direct sums of Lie algebras and continuous integrable couplings,” Phys. Lett. A, 351, 125–130 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. H. F. Wang and Y. F. Zhang, “Two nonisospectral integrable hierarchies and its integrable coupling,” Internat. J. Theoret. Phys., 59, 2529–2539 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. W.-X. Ma, J. H. Meng, and H. Q. Zhang, “Integrable couplings, variational identities and Hamiltonian formulations,” Global J. Math. Sci., 1, 1–17 (2012).

    Google Scholar 

  27. M. Mcanally and W.-X. Ma, “Two integrable couplings of a generalized D-Kaup–Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures,” Nonlinear Anal., 191, 111629, 13 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  28. F. K. Guo and Y. F. Zhang, “The quadratic-form identity for constructing the Hamiltonian structure of integrable systems,” J. Phys. A: Math. Gen., 38, 8537–8548 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. X.-G. Geng and W.-X. Ma, “A generalized Kaup–Newell spectral problem, soliton equations and finite-dimensional integrable systems,” Nuovo Cimento A, 108, 477–486 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  30. F. K. Guo and Y. F. Zhang, “A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling,” J. Math. Phys., 44, 5793–5803 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Y. F. Zhang, H. Tam, and B. L. Feng, “A generalized Zakharov–Shabat equation with finite-band solutions and a soliton-equation hierarchy with an arbitrary parameter,” Chaos Solitons Fractals, 44, 968–976 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Y. F. Zhang, E. G. Fan, and H. Tam, “A few expanding Lie algebras of the Lie algebra \(A_1\) and applications,” Phys. Lett. A, 359, 471–480 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. W.-X. Ma, “Riemann–Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system,” J. Geom. Phys., 132, 45–54 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. H. F. Wang and Y. F. Zhang, “A kind of generalized integrable couplings and their bi-Hamiltonian structure,” Internat. J. Theoret. Phys., 60, 1797–1812 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. H. F. Wang and Y. F. Zhang, “A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems,” Commun. Nonlinear Sci. Numer. Simul., 99, 105822, 15 pp. (2021).

    Article  MathSciNet  MATH  Google Scholar 

  36. H. F. Wang and Y. F. Zhang, “A new multi-component integrable coupling and its application to isospectral and nonisospectral problems,” Commun. Nonlinear Sci. Numer. Simul., 105, 106075, 15 pp. (2022).

    Article  MathSciNet  MATH  Google Scholar 

  37. H. F. Wang, “The multi-component nonisospectral KdV hierarchies associated with a new class of \(N\)-dimensional Lie algebra,” arXiv: 2201.03205.

Download references

Funding

This work was supported by the Scientific Research Start-Up Foundation of Jimei University (grant No. ZQ2022024), the Fujian Provincial Education Department (grant No. JAT220172), and the National Natural Science Foundation of China (grant No. 12071179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Wang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 215, pp. 437–464 https://doi.org/10.4213/tmf10423.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, H. & Li, C. A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies. Theor Math Phys 215, 837–861 (2023). https://doi.org/10.1134/S0040577923060077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923060077

Keywords

Navigation