Skip to main content
Log in

Librations with large periods in tunneling: Efficient calculation and applications to trigonal dimers

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In studying tunnel asymptotics for lower energy levels of the Schrödinger operator (such as the energy splitting in a symmetric double well or the width of a spectral band in a periodic problem), there naturally arise librations, i.e., periodic solutions of a classical system with inverted potential, which reach the boundary of the domain of possible motions twice during the period. In the limit, they give double-asymptotic solutions with two symmetric unstable equilibria (instantons). The tunnel asymptotics can be written in two ways: either in terms of the action on the instanton and the linearized dynamics in its neighborhood or in terms of a certain libration, called a tunnel libration. The second way is more constructive, since when used in numerical calculations, it reduces to two operations: finding a libration with a given energy and calculating the Floquet coefficients for a given libration. To apply this approach in practice, we propose to find librations with a given energy by using a numerical variational method that generalizes the ideas of the nudged elastic band method. As an application, we find the asymptotics for the widths of the lower spectral bands and gaps, expressed in terms of tunnel libration in a four-dimensional system describing the dimer in a trigonal-symmetric field, which was proposed by M. I. Katsnelson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, London–Paris (1958).

    Google Scholar 

  2. M. V. Fedoryuk, “Asymptotics of the discrete spectrum of the operator \(w''(x)-\lambda^2p(x)w(x)\) [in Russian],” Mat. Sb. (N. S.), 68(110), 81–110 (1965).

    Google Scholar 

  3. C. Herring, “Critique of the Heitler–London method of calculating spin couplings at large distances,” Rev. Modern Phys., 34, 631–645 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. E. Harrell, “Double wells,” Commun. Math. Phys., 75, 239–261 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S. Coleman, “The uses of instantons,” in: The Whys of Subnuclear Physics (Erice, Sicily, 23 July – 10 August, 1977, The Subnuclear Series, Vol. 15, A. Zichichi, ed.), Springer, New York (1979), pp. 805–941; E. Gildener and A. Patrascioiu, “Pseudoparticle contributions to the energy spectrum of a one-dimensional system,” Phys. Rev. D, 16, 423–430 (1977); A. M. Polyakov, “Quark confinement and topology of gauge theories,” Nucl. Phys. B, 120, 429–458 (1977); G. Jona-Lasinio, F. Martinelli, and E. Scoppola, “New approach to the semiclassical limit of quantum mechanics. I. Multiple tunnelings in one dimension,” Commun. Math. Phys., 80, 223–254 (1981); J. M. Combes, P. Duclos, and R. Seiler, “Krein’s formula and one dimensional multiple well,” J. Funct. Anal., 52, 257–301 (1983); T. F. Pankratova, “Quasimodes and splitting of eigenvalues [in Russian],” Dokl. Akad. Nauk SSSR, 276, 795–799 (1984).

    Chapter  Google Scholar 

  6. A. G. Alenitsyn, “Splitting of the spectrum generated by a potential barrier in problems with a symmetric potential [in Russian],” Differ. Uravneniya, 18, 1971–1975 (1982).

    MathSciNet  MATH  Google Scholar 

  7. B. Helffer and J. Sjöstrand, “Multiple wells in the semi-classical limit I,” Commun. Part. Differ. Equ., 9, 337–408 (1984).

    Article  MATH  Google Scholar 

  8. B. Helffer and J. Sjöstrand, “Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation,” Ann. Inst. H. Poincaré Phys. Théor., 42, 127–212 (1985).

    MathSciNet  MATH  Google Scholar 

  9. V. P. Maslov, “Global exponential asymptotic behavior of solutions of the tunnel equations and the problem of large deviations,” Proc. Steklov Inst. Math., 163, 177–209 (1985).

    MATH  Google Scholar 

  10. B. Simon, “Semiclassical analysis of low lying eigenvalues. II. Tunneling,” Ann. Math., 120, 89–118 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Simon, “Semiclassical analysis of low lying eigenvalues. III. Width of the ground state band in strongly coupled solids,” Ann. Phys., 158, 415–420 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. Outassourt, “Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique,” J. Func. Anal., 72, 65–93 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Martinez, “Estimations de l’effet tunnel pour le double puits I,” J. Math. Pures Appl. (9), 66, 195–215 (1987).

    MathSciNet  MATH  Google Scholar 

  14. S. Yu. Dobrokhotov, V. N. Kolokoltsov, and V. P. Maslov, “Splitting of the lowest energy levels of the Schrödinger equation and asymptotic behavior of the fundamental solution of the equation \(hu_t=h^2\Delta u/2-V(x)u\),” Theoret. and Math. Phys., 87, 561–599 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J. Brüning, S. Yu. Dobrokhotov, and E. S. Semenov, “Unstable closed trajectories, librations and splitting of the lowest eigenvalues in quantum double well problem,” Regul. Chaotic Dyn., 11, 167–180 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. Yu. Anikin, “Librations and ground-state splitting in a multidimensional double-well problem,” Theoret. and Math. Phys., 175, 609–619 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Yu. Anikin, S. Yu. Dobrokhotov, and M. I. Katsnel’son, “Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers,” Theoret. and Math. Phys., 188, 1210–1235 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. V. Bolotin and V. V. Kozlov, “Libration in systems with many degrees of freedom,” J. Appl. Math. Mech., 42, 256–261 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Yu. Dobrokhotov and V. N. Kolokoltsov, “Splitting amplitudes of the lowest energy levels of the Schrödinger operator with double-well potential,” Theoret. and Math. Phys., 94, 300–305 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Yu. Dobrokhotov and V. N. Kolokol’tsov, “The double-well splitting of the low energy levels for the Schrödinger operator of discrete \(\phi^4\)-models on tori,” J. Math. Phys., 36, 1038–1053 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Yu. Anikin, “Asymptotic behaviour of the Maupertuis action on a libration and a tunneling in a double well,” Rus. J. Math. Phys., 20, 1–10 (2013).

    Article  MATH  Google Scholar 

  22. A. Anikin and M. Rouleux, “Multidimensional tunneling between potential wells at non degenerate minima,” in: Days on Diffraction 2014 (St. Petersburg, May 26–30, 2014, O. V. Motygin, A. P. Kiselev, L. I. Goray, A. Ya. Kazakov, and A. S. Kirpichnikova, eds.), IEEE, New York (2014), pp. 17–22.

    Google Scholar 

  23. S. Yu. Dobrokhotov and A. Yu. Anikin, “Tunneling, librations and normal forms in a quantum double well with a magnetic field,” in: Nonlinear Physical Systems. Spectral Analysis, Stability and Bifurcations (Mechanical Engineering and Solid Mechanics Series, O. N. Kirillov and D. E. Pelinovsky, eds.), John Wiley and Sons, Hoboken, NJ (2014), pp. 85–110.

    Chapter  Google Scholar 

  24. A. Yu. Anikin and M. A. Vavilova, “Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential,” Theoret. and Math. Phys., 202, 231–242 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. H. Jónsson, G. Mills, and K. W. Jacobsen, “Nudged elastic band method for finding energy paths of transitions,” in: Classical and Quantum Dynamics in Condensed Phase Simulations (Lerici, 7–18 July, 1997), World Sci., Singapore (1998), pp. 385–404.

    Chapter  Google Scholar 

  26. G. Henkelman, B. P. Uberuaga, and H. A. Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” J. Chem. Phys., 113, 9901–9904 (2000).

    Article  ADS  Google Scholar 

  27. D. M. Einarsdóttir, A. Arnaldsson, F. Óskarsson, and H. Jónsson, “Path optimization with application to tunneling,” in: Applied Parallel and Scientific Computing. PARA 2010, (Lecture Notes in Computer Science, Vol. 7134, K. Jónasson, ed.), Springer, Berlin–Heidelberg (2012), pp. 45–55; V. Ásgeirsson, A. Arnaldsson, and H. Jónsson, “Efficient evaluation of atom tunneling combined with electronic structure calculations,” J. Chem. Phys., 148, 102334, 10 pp. (2018).

    Chapter  Google Scholar 

  28. M. I. Katsnelson, M. van Schilfgaarde, V. P. Antropov, and B. N. Harmon, “Ab initio instanton molecular dynamics for the description of tunneling phenomena,” Phys. Rev. A, 54, 4802–4809 (1996).

    Article  Google Scholar 

  29. M. I. Katsnelson, Graphene. Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge (2012).

    Book  Google Scholar 

  30. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Encyclopaedia of Mathematical Sciences, Vol. 3), Springer-Verlag, Berlin (2006).

    Book  MATH  Google Scholar 

  31. Von H. Seifert, W. Threlfall, Variationsrechnung im Grossen [Theorie von Marston Morse], Teubner, Leipzig, Berlin (1938).

    MATH  Google Scholar 

  32. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  33. C. Fusco, A. Fasolino, and T. Janssen, “Nonlinear dynamics of dimers on periodic substrates,” Eur. Phys. J. B, 31, 95–102 (2003); E. Pijper and A. Fasolino, “Mechanisms for correlated surface diffusion of weakly bonded dimers,” Phys. Rev. B, 72, 165328, 5 pp. (2005).

    Article  ADS  Google Scholar 

  34. M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London (1978).

    MATH  Google Scholar 

  35. H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” J. Chem. Phys., 72, 2384–2393 (1980).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank A. A. Fedotov for the valuable remarks.

Funding

This work was supported by the Russian Science Foundation (grant No. RSF-21-71-30011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Anikin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 163–190 https://doi.org/10.4213/tmf10332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.Y., Dobrokhotov, S.Y. & Nosikov, I.A. Librations with large periods in tunneling: Efficient calculation and applications to trigonal dimers. Theor Math Phys 213, 1453–1476 (2022). https://doi.org/10.1134/S0040577922100117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922100117

Keywords

Navigation