Skip to main content
Log in

Superpositions of coherent states determined by Gauss sums

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a family of quantum states of the Schrödinger cat type as superpositions of the harmonic oscillator coherent states with coefficients defined by the quadratic Gauss sums. These states emerge as eigenfunctions of the lowering operators obtained after canonical transformations of the Heisenberg–Weyl algebra associated with the ordinary and fractional Fourier transformations. The first member of this family is given by the well known Yurke–Stoler coherent state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, “Der stetige Übergang von der Mikro- zur Makromechanik,” Die Naturwissenschaften, 14, 664–666 (1926).

    Article  ADS  Google Scholar 

  2. C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge Univ. Press, Cambridge (2005).

    Google Scholar 

  3. E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften, 23, 807–812 (1935).

    Article  ADS  Google Scholar 

  4. B. Yurke and D. Stoler, “Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett., 57, 13–16 (1986).

    Article  ADS  Google Scholar 

  5. B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, John Wiley and Sons, New York (1998).

    MATH  Google Scholar 

  6. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Modern Optics, 43, 2139–2164 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  7. C. R. Fernández-Pousa, “On the structure of quadratic Gauss sums in the Talbot effect,” J. Opt. Soc. Am. A, 34, 732–742 (2017).

    Article  ADS  Google Scholar 

  8. M. Mehring, K. Müller, I. Sh. Averbukh, W. Merkel, and W. P. Schleich, “NMR experiment factors numbers with Gauss sums,” Phys. Rev. Lett., 98, 120502, 4 pp. (2007); arXiv: quant-ph/0609174.

    Article  ADS  Google Scholar 

  9. V. Spiridonov and A. Zhedanov, “Zeros and orthogonality of the Askey–Wilson polynomials for \(q\) a root of unity,” Duke Math. J., 89, 283–305 (1997); arXiv: q-alg/9605034.

    Article  MathSciNet  Google Scholar 

  10. V. Spiridonov, “Universal superpositions of coherent states and self-similar potentials,” Phys. Rev. A, 52, 1909–1935 (1995); arXiv: quant-ph/9601030.

    Article  ADS  Google Scholar 

  11. V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, “Even and odd coherent states and excitations of a singular oscillator,” Physica, 72, 597–618 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  12. W. H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum decoherence,” Nature, 412, 712–717 (2001).

    Article  ADS  Google Scholar 

  13. R. J. Marks II, Handbook of Fourier Analysis and Its Applications, Oxford University Press, Oxford (2009).

    Book  Google Scholar 

  14. V. P. Spiridonov, “Self-similar potentials in quantum mechanics and coherent states,” Phys. Part. Nucl., 52, 274–289 (2021); arXiv: 2009.02360.

    Article  Google Scholar 

  15. Arman, G. Tyagi, and P. K. Panigrahi, “Photon added cat state: phase space structure and statistics,” Optics Lett., 46, 1177–1180 (2021); arXiv: 2011.00990.

    Article  ADS  Google Scholar 

  16. A. C. McBride and F. H. Kerr, “On Namias’s fractional Fourier transforms,” IMA J. Appl. Math., 39, 159–175 (1987).

    Article  MathSciNet  Google Scholar 

  17. U. M. Titulaer and R. J. Glauber, “Density operators for coherent fields,” Phys. Rev., 145, 1041–1050 (1966).

    Article  ADS  Google Scholar 

  18. R. Tanaś, “Nonclassical states of light propagating in Kerr media,” in: Theory of Nonclassical States of Light (V. V. Dodonov, V. I. Man’ko, eds.), Francis and Taylor, London (2003), pp. 277–318.

    Google Scholar 

  19. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science, 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  20. K. Chandrasekharan, Introduction to Analytic Number Theory, (Die Grundlehren der mathematischen Wissenschaften, Vol. 148), Springer, New York (1968).

    Book  Google Scholar 

  21. U. Roy, S. Ghosh, P. K. Panigrahi, and D. Vitali, “Sub-Planck-scale structures in the Pöschl–Teller potential and their sensitivity to perturbations,” Phys. Rev. A, 80, 052115, 8 pp. (2009); arXiv: 0904.0488.

    Article  ADS  Google Scholar 

  22. Z. Bialynicka-Birula, “Properties of the generalized coherent state,” Phys. Rev., 173, 1207–1209 (1968).

    Article  ADS  Google Scholar 

  23. D. Stoler, “Generalized coherent states,” Phys. Rev. D, 4, 2309–2312 (1971).

    Article  ADS  Google Scholar 

  24. Ts. Gantsog and R. Tanaś, “Discrete superpositions of coherent states and phase properties of elliptically polarized light propagating in a Kerr medium,” Quantum Opt., 3, 33–48 (1991).

    Article  ADS  Google Scholar 

  25. K. Tara, G. S. Agarwal, and S. Chaturvedi, “Production of Schrödinger macroscopic quantum-superposition states in a Kerr medium,” Phys. Rev. A, 47, 5024–5029 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is indebted to P. K. Panigrahi for an inspiring invitation to lecture at the QIQT-2021 School (Kolkata, July 2021) and to A. S. Zhedanov for a useful discussion on the Gauss sums.

Funding

This study has been partially funded within the framework of the HSE University Basic Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Spiridonov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 212, pp. 403–413 https://doi.org/10.4213/tmf10276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, V.P. Superpositions of coherent states determined by Gauss sums. Theor Math Phys 212, 1237–1245 (2022). https://doi.org/10.1134/S0040577922090069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922090069

Keywords

Navigation