Skip to main content
Log in

Split Casimir operator and solutions of the Yang–Baxter equation for the \(osp(M|N)\) and \(s\ell(M|N)\) Lie superalgebras, higher Casimir operators, and the Vogel parameters

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We find the characteristic identities for the split Casimir operator in the defining and adjoint representations of the \(osp(M|N)\) and \(s\ell(M|N)\) Lie superalgebras. These identities are used to build the projectors onto invariant subspaces of the representation \(T^{\otimes 2}\) of the \(osp(M|N)\) and \(s\ell(M|N)\) Lie superalgebras in the cases where \(T\) is the defining or adjoint representation. For the defining representation, the \(osp(M|N)\)- and \(s\ell(M|N)\)-invariant solutions of the Yang–Baxter equation are expressed as rational functions of the split Casimir operator. For the adjoint representation, the characteristic identities and invariant projectors obtained are considered from the standpoint of a universal description of Lie superalgebras by means of the Vogel parameterization. We also construct a universal generating function for higher Casimir operators of the \(osp(M|N)\) and \(s\ell(M|N)\) Lie superalgebras in the adjoint representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By weight spaces, we mean spaces on which \(\widehat{C}_T\) acts by a Jordan cell with the corresponding eigenvalue.

References

  1. S. Okubo, “Casimir invariants and vector operators in simple and classical Lie algebras,” J. Math. Phys., 18, 2382–2394 (1977).

    Article  ADS  Google Scholar 

  2. V. Chari and A. N. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  3. Z. Ma, Yang–Baxter Equation and Quantum Enveloping Algebras, (Advanced Series on Theoretical Physical Science, Vol. 1), World Sci., Singapore (1993).

    Book  Google Scholar 

  4. A. N. Sergeev, “The tensor algebra of the identity representation as a module over the Lie superalgebras \(\mathfrak Gl(n,m)\) and \(Q(n)\),” Math. USSR-Sb., 51, 419–427 (1985).

    Article  Google Scholar 

  5. A. Berele and A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras,” Adv. Math., 62, 118–175 (1987).

    Article  MathSciNet  Google Scholar 

  6. M. Ehrig and C. Stroppel, “Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra,” Math. Z., 284, 595–613 (2016).

    Article  MathSciNet  Google Scholar 

  7. P. Vogel, The universal Lie algebra (preprint), Université Paris, http://www.math.jussieu.fr/\(\sim\)vogel/A299.ps.gz (1999).

  8. P. Deligne, “La serie exceptionnelle des groupes de Lie,” C. R. Acad. Sci. Paris Sér. I, 322, 321–326 (1996).

    MATH  Google Scholar 

  9. J. M. Landsberg and L. Manivel, “Triality, exceptional Lie algebras and Deligne dimension formulas,” Adv. Math., 171, 59–85 (2002).

    Article  MathSciNet  Google Scholar 

  10. R. L. Mkrtchyan, A. N. Sergeev, and A. P. Veselov, “Casimir eigenvalues for universal Lie algebra,” J. Math. Phys., 53, 102106, 7 pp. (2012).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. M. Landsberg and L. Manivel, “A universal dimension formula for complex simple Lie algebras,” Adv. Math., 201, 379–407 (2006).

    Article  MathSciNet  Google Scholar 

  12. M. Y. Avetisyan and R. L. Mkrtchyan, “\(X_2\) series of universal quantum dimensions,” J. Phys. A: Math. Theor., 53, 045202, 28 pp. (2020); “On \((ad)^n(X_2)^k\) series of universal quantum dimensions,” J. Math. Phys., 61, 101701, 23 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Mironov, R. Mkrtchyan, and A. Morozov, “On universal knot polynomials,” JHEP, 02, 078, 34 pp. (2016); arXiv: 1510.05884.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Mironov and A. Morozov, “Universal Racah matrices and adjoint knot polynomials: Arborescent knots,” Phys. Lett. B, 755, 47–57 (2016); arXiv: 1511.09077.

    Article  ADS  MathSciNet  Google Scholar 

  15. A. P. Isaev and S. O. Krivonos, “Split Casimir operator for simple Lie algebras, solutions of Yang–Baxter equations and Vogel parameters,” J. Math. Phys., 62, 083503, 33 pp. (2021), arXiv: 2102.08258; “Split Casimir operator and universal formulation of the simple Lie algebras,” Symmetry, 13, 1046, 11 pp. (2021), arXiv: 2106.04470.

    Article  ADS  MathSciNet  Google Scholar 

  16. A. P. Isaev and A. A. Provorov, “Projectors on invariant subspaces of representations \(\operatorname{ad}^{\otimes2}\) of Lie algebras \(so(N)\) and \(sp(2r)\) and Vogel parameterization,” Theoret. and Math. Phys., 206, 1–18 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. G. Kac, “Lie superalgebras,” Adv. Math., 26, 8–96 (1977).

    Article  Google Scholar 

  18. F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables, Moscow State Univ. Press, Moscow (1983).

    Google Scholar 

  19. J. Fuksa, A. P. Isaev, D. Karakhanyan, and R. Kirschner, “Yangians and Yang–Baxter R-operators for ortho-symplectic superalgebras,” Nucl. Phys. B, 917, 44–85 (2017); arXiv: 1612.04713.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. P. Isaev, D. Karakhanyan, and R. Kirschner, “Yang–Baxter \(R\)-operators for \(osp\) superalgebras,” Nucl. Phys. B, 965, 115355, 28 pp. (2021); arXiv: 2009.08143.

    Article  MathSciNet  Google Scholar 

  21. V. G. Kac, “A sketch of Lie superalgebra theory,” Commun. Math. Phys., 53, 31–64 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  22. F. A. Berezin, Introduction to Superanalysis, (Mathematical Physics and Applied Mathematics, Vol. 9), Springer, Dordrecht (1987).

    Book  Google Scholar 

  23. L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie Algebras and Superalgebras, Academic Press, London (2000).

    MATH  Google Scholar 

  24. L. Frappat, A. Sciarrino, and P. Sorba, “Structure of basic Lie superalgebras and of their affine extensions,” Commun. Math. Phys., 121, 457–500 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Cvitanović, Group Theory. Birdtracks, Lie’s, and Exceptional Groups, Princeton Univ. Press, Princeton (2008).

    Book  Google Scholar 

  26. A. P. Isaev and V. A. Rubakov, Theory of Groups and Symmetries, Vol. 2: Representations of Groups and Lie Algebras. Applications, World Sci., Singapore (2020).

    Book  Google Scholar 

  27. P. P. Kulish and E. K. Sklyanin, “Solutions of the Yang–Baxter equation,” J. Soviet Math., 19, 1596–1620 (1982).

    Article  Google Scholar 

  28. A. P. Isaev, Quantum groups and Yang–Baxter equations (Preprint MPI 2004-132), Max-Plank-Institut für Mathematik, Bonn, http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf (2004).

  29. V. G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory,” in: Lie Theory and Geometry (Progress in Mathematics, Vol. 123, J.-L. Brylinski, R. Brylinski, V. Guillemin, and V. Kac, eds.), Birkhäuser, Boston, MA (1994), pp. 415–456.

    Article  MathSciNet  Google Scholar 

  30. A. P. Isaev and V. A. Rubakov, Theory of groups and symmetries, Vol. I: Finite Groups, Lie Groups and Lie Algebras, World Sci., Singapore (2018).

    Book  Google Scholar 

Download references

Acknowledgments

We thank S. O. Krivonos for the stimulating discussions and comments.

Funding

The research was supported by the Russian Science Foundation (Grant No. 19-11-00131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Provorov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 259-301 https://doi.org/10.4213/tmf10172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, A.P., Provorov, A.A. Split Casimir operator and solutions of the Yang–Baxter equation for the \(osp(M|N)\) and \(s\ell(M|N)\) Lie superalgebras, higher Casimir operators, and the Vogel parameters. Theor Math Phys 210, 224–260 (2022). https://doi.org/10.1134/S0040577922020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922020064

Keywords

Navigation