Skip to main content
Log in

Bäcklund transformation and applications for the Vakhnenko equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

With the aid of the reciprocal transformation and the associated Vakhnenko equation, we construct and study a Bäcklund transformation (BT) involving both independent and dependent variables for the Vakhnenko equation. We derive the corresponding nonlinear superposition formula or \(2\)-BT and \(3\)-BT and rewrite them in terms of Pfaffians. We also discuss the representation for the general \(N\)-BT. As applications, some explicit solutions of the Vakhnenko equation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. V. A. Vakhnenko, “Solitons in a nonlinear model medium,” J. Phys. A: Math. Gen., 25, 4181–4187 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. N. W. Hone and J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations,” Inverse Problems, 19, 129–145 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. N. W. Hone, V. Novikov, and J. P. Wang, “Generalizations of the short pulse equation,” Lett. Math. Phys., 108, 927–947 (2018); arXiv: 1612.02481.

    ADS  MathSciNet  MATH  Google Scholar 

  4. Yu. A. Stepanyants, “On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons,” Chaos Solitons Fractals, 28, 193–204 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. B.-F. Feng, K. Maruno, and Y. Ohta, “Integrable semi-discretizations of the reduced Ostrovsky equation,” J. Phys. A: Math. Theor., 48, 135203, 20 pp. (2015); arXiv: 1502.03891.

    Article  ADS  MathSciNet  Google Scholar 

  6. V. O. Vakhnenko and E. J. Parkes, “The two loop soliton solution of the Vakhnenko equation,” Nonlinearity, 11, 1457–1464 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. J. Morrison, E. J. Parkes, and V. O. Vakhnenko, “The \(N\) loop soliton solution of the Vakhnenko equation,” Nonlinearity, 12, 1427–1437 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. O. Vakhnenko and E. J. Parkes, “The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method,” Chaos Solitons Fractals, 13, 1819–1826 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Boutet de Monvel and D. Shepelsky, “The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach,” J. Phys. A: Math. Theor., 48, 035204, 34 pp. (2014).

    Article  MathSciNet  Google Scholar 

  10. N. H. Li, G. H. Wang, and Y. H. Kuang, “Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach,” Theoret. and Math. Phys., 203, 608–620 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. J. Parkes, “The stability of solution of Vakhnenko’s equation,” J. Phys. A: Math. Gen., 26, 6469–6475 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. A. Vakhnenko, “High-frequency soliton-like waves in a relaxing medium,” J. Math. Phys., 40, 2011–2020 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. O. Vakhnenko, E. J. Parkes, and A. V. Michtchenko, “The Vakhnenko equation from the viewpoint of the inverse scattering method for the KdV equation,” Internat. J. Differ. Equ. Appl., 1, 429–449 (2000).

    Google Scholar 

  14. C. Rogers and W. F. Shadwick, Bäklund Transformation and Their Applications, (Mathematics in Science and Engineering, Vol. 161), Academic Press, New York (1982).

    Google Scholar 

  15. C. H. Gu, H. S. Hu, and Z. X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Sci.-Tech. Publ., Shanghai (2005).

    Google Scholar 

  16. C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations (Cambridge Texts in Applied Mathematics), Cambridge Univ. Press, Cambridge (2002).

    Book  Google Scholar 

  17. D. Levi and R. Benguria, “Bäcklund transformations and nonlinear differential difference equations,” Proc. Nat. Acad. Sci. USA, 77, 5025–5027 (1980).

    Article  ADS  Google Scholar 

  18. Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, (Progress in Mathematics, Vol. 219), Birkhäuser, Basel (2003).

    Book  Google Scholar 

  19. D. Levi, “Nonlinear differential difference equations as Bäcklund transformations,” J. Phys. A: Math. Gen., 14, 1083–1098 (1981).

    Article  ADS  Google Scholar 

  20. J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability, (Cambridge Texts in Applied Mathematics, Vol. 54), Cambridge Univ. Press, Cambridge (2016).

    Book  Google Scholar 

  21. A. G. Rasin and J. Schiff, “The Gardner method for symmetries,” J. Phys. A: Math. Theor., 46, 155202, 15 pp. (2013).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. G. Rasin and J. Schiff, “Bäcklund transformations for the Camassa–Holm equation,” J. Nonlinear Sci., 27, 45–69 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. G. H. Wang, Q. P. Liu, and H. Mao, “The modified Camassa–Holm equation: Bäcklund transformations and nonlinear superposition formulae,” J. Phys. A: Math. Theor., 53, 294003, 15 pp. (2020).

    Article  Google Scholar 

  24. H. Mao and G. H. Wang, “Bäcklund transformations for the Degasperis–Procesi equation,” Theoret. and Math. Phys., 203, 747–750 (2020).

    Article  ADS  Google Scholar 

  25. D. Levi and O. Ragnisco, “Non-isospectral deformations and Darboux transformations for the third-order spectral problem,” Inverse Problems, 4, 815–828 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. B. Leble and N. V. Ustinov, “Third order spectral problems: reductions and Darboux transformations,” Inverse Problems, 10, 617–633 (1994).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

It is our pleasure to thank Professor Q. P. Liu and the anonymous referees for their useful suggestions and comments.

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11871471, 11931017 and 11905110) and the Natural Science Foundation of Guangxi Zhuang autonomous region, China (Grant No. 2018GXNSFBA050020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Mao.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 199-212 https://doi.org/10.4213/tmf10182.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Mao, H. Bäcklund transformation and applications for the Vakhnenko equation. Theor Math Phys 210, 172–183 (2022). https://doi.org/10.1134/S0040577922020027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922020027

Keywords

Navigation