Skip to main content
Log in

Functional integrals and phase stability properties in the \(O(N)\) vector field condensation model

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using condensation of auxiliary Bose fields and the functional integral method, we derive an effective action of the binary \(O(N)\) vector field model on a sphere. We analyze two models with different forms of the coupling constants : the binary field model on \(S^3\) and the two-component vector field model on \(S^d\). In both models, we obtain the convergence conditions for the partition function from the traces of a free propagator. From analytic solutions of the saddle-point equations, we derive phase stability conditions, which imply that the system allows the formation of coexisting condensates when the condensate densities of the complex Bose fields and the unit vector field satisfy a certain constraint. In addition, within the \(1/N\) expansion of the free energy on \(S^d\), we also find that the absolute value of free energy decreases as the dimension \(d\) increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Kapusta, “Bose–Einstein condensation, spontaneous symmetry breaking, and gauge theories,” Phys. Rev. D, 24, 426–439 (1981).

    Article  ADS  Google Scholar 

  2. J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications, Cambridge Univ. Press, Cambridge (2006).

    Book  Google Scholar 

  3. S. Bornholdt, N. Tetradis, and C. Wetterich, “Coleman–Weinberg phase transition in two-scalar models,” Phys. Lett. B, 348, 89–99 (1994); arXiv: hep-th/9408132.

    Article  ADS  Google Scholar 

  4. S. Bornholdt, N. Tetradis, and C. Wetterich, “High temperature phase transition in two-scalar theories,” Phys. Rev. D, 53, 4552–4569 (1995); arXiv: hep-ph/9503282.

    Article  ADS  Google Scholar 

  5. E. Babaev, L. D. Faddeev, and A. J. Niemi, “Hidden symmetry and knot solitons in a charged two-condensate Bose system,” Phys. Rev. B, 65, 100512, 4 pp. (2001).

    Article  Google Scholar 

  6. E. Babaev, “Phase diagram of planar \(U(1)\times U(1)\) superconductors: condensation of vortices with fractional flux and a superfluid state,” Nucl. Phys. B, 686, 397–412 (2003); arXiv: cond-mat/0201547.

    Article  ADS  MathSciNet  Google Scholar 

  7. I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical \(O(N)\) vector model,” Phys. Lett. B, 550, 213–219 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. A. Hartnoll and S. P. Kumar, “The \(O(N)\) model on a squashed \(S^3\) and the Klebanov–Polyakov correspondence,” JHEP, 06, 012, 25 pp. (2005); arXiv: hep-th/0503238.

    Article  ADS  MathSciNet  Google Scholar 

  9. I. R. Klebanov, S. S. Pufu, and B. R. Safdi, “\(F\)-theorem without supersymmetry,” JHEP, 10, 38, 26 pp. (2011); arXiv: 1105.4598.

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Giombi and I. R. Klebanov, “Interpolating between \(a\) and \(F\) ,” JHEP, 03, 117, 34 pp. (2015).

    Article  MathSciNet  Google Scholar 

  11. J. Fröhlich, A. Mardin, and V. Rivasseau, “Borel summability of the \(1/N\) expansion for the \(N\)-vector [\(O(N)\) nonlinear \(\sigma\)] models,” Commun. Math. Phys., 86, 87–110 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. ’t Hooft, “On the convergence of planar diagram expansions,” Commun. Math. Phys., 86, 449–464 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Chen and Y. Zhu, “Convergence of the variational cumulant expansion,” Commun. Theor. Phys., 28, 241–244 (1997).

    Article  ADS  Google Scholar 

  14. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Reidel Publ. Company, Dordrecht, Holland (1983).

    Book  Google Scholar 

  15. Y. Guo and R. Seiringer, “On the mass concentration for Bose–Einstein condensate with attractive interaction,” Lett. Math. Phys., 104, 141–156 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. B.-R. Zhou, “Interplay between quark-antiquark and diquark condensates in vacuum in a two-flavor Nambu–Jona–Lasinio model,” Commun. Theor. Phys., 47, 95–101 (2007); arXiv: hep-th/0703059.

    Article  ADS  Google Scholar 

  17. L. C. L. Botelho, Methods of Bosonic and Fermionic Path Integrals Representations: Continuum Random Geometry in Quantum Field Theory, Nova Sci., New York (2009).

    Google Scholar 

  18. M. Moshe and J. Zinn-Justin, “Quantum field theory in the large \(N\) limit: a review,” Phys. Rep., 385, 69–228 (2003); arXiv: hep-th/0306133.

    Article  ADS  MathSciNet  Google Scholar 

  19. A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge Univ. Press, Cambridge (2003).

    Book  Google Scholar 

  20. J. Yan and B.-L. Li, “Functional integrals and convergence of partition function in sine-Gordon–Thirring model,” Lett. Math. Phys., 104, 233–242 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Yan, “Functional integrals and phase structures in sine-Gordon–Thirring model,” Modern Phys. Lett. B, 26, 1250178, 7 pp. (2012).

    Article  ADS  MathSciNet  Google Scholar 

  22. N. E. Bogdanova and V. N. Popov, “Two-dimensional field theory with several condensed phases,” Theoret. and Math. Phys., 46, 212–218 (1981).

    Article  ADS  Google Scholar 

  23. P. N. Brusov and P. P. Brusov, Collective Excitations in Unconventional Superconductors and Superfluids, World Sci., Singapore (2010).

    MATH  Google Scholar 

  24. V. S. Yarunin and L. A. Siurakshina, “Branch structure of the Bose-condensate excitations spectrum,” Phys. A, 215, 261–269 (1995).

    Article  Google Scholar 

  25. M. Dilaver, P. Rossi, and Y. Gündüç, “Scaling contributions to the free energy in the \(1/N\) expansion of \(O(N)\) nonlinear sigma models in \(d\)-dimensions,” Phys. Lett. B, 420, 314–318 (1998).

    Article  ADS  Google Scholar 

  26. J. O. Andersen, D. Boer, and H. J. Warringa, “Thermodynamics of the \(O(N)\) nonlinear sigma model in \(1+1\) dimensions,” Phys. Rev. D, 69, 076006, 8 pp. (2004), arXiv: hep-ph/ 0309091; “Thermodynamics of \(O(N)\) sigma models: \(1/N\) corrections,” 70, 116007, 11 pp. (2004); arXiv: hep-ph/0408033.

    Article  ADS  Google Scholar 

  27. A. O. Sorokin, “Weak first-order transition and pseudoscaling behavior in the universality class of the \(O(N)\) Ising model,” Theoret. and Math. Phys., 200, 1193–1204 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Yan, “Functional integrals and \(1/h\) expansion in the boson-fermion model,” Phys. A, 452, 145–150 (2016).

    Article  MathSciNet  Google Scholar 

  29. D. Baranov and V. Yarunin, “\({}^4\)He spectrum shift caused by \({}^3\)He admixture,” Phys. A, 269, 222–234 (1999).

    Article  Google Scholar 

  30. B.-X. Zou, J. Yan, J.-G. Li, and W.-J. Su, “Functional integrals and energy density fluctuations on black hole background,” Gen. Rel. Grav., 43, 305–314 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Yan, “Functional integrals and correlation functions in the sine-Gordon–Thirring model with gravity correction,” Gravit. Cosmol., 23, 45–49 (2017).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks the referee for having carefully read the manuscript and for very valuable suggestions.

Funding

This work was supported by the Natural Science Foundation of Sichuan Education Committee (Grant No. 11ZA100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 128–139 https://doi.org/10.4213/tmf10144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J. Functional integrals and phase stability properties in the \(O(N)\) vector field condensation model. Theor Math Phys 210, 111–120 (2022). https://doi.org/10.1134/S0040577922010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922010081

Keywords

Navigation