Skip to main content
Log in

Majorana fermions, supersymmetry, and thermofield dynamics

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show the existence of supersymmetry and degeneracy for an arbitrary \((\)even or odd\()\) number of Majorana fermions without invoking any symmetry of the Hamiltonian. We analyze supersymmetry at a finite temperature using the thermofield dynamics formalism. Such an analysis emerges from the construction of a thermal formulation for Majorana fermions in the thermofield dynamics scenario. Furthermore, we derive thermal braiding operators via Bogoliubov transformations and find its action on a thermal Bell state. Based on quantum fidelity, we measure the distance between the thermal states and the corresponding pure states. In the limit as the temperature tends to zero, we recover the pure states and the fidelity approaches unity. This analysis makes it possible to analyze the influence of temperature on the evolution of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. E. Majorana, “Teoria simmetrica dell’elettrone e del positrone,” Nuovo Cimento, 14, 171–184 (1937).

    Article  Google Scholar 

  2. A. Gando, Y. Gando, T. Hachiya et al. [KamLAND-Zen Collab.], “Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen,” Phys. Rev. Lett., 117, 082503, 6 pp. (2016).

    Article  ADS  Google Scholar 

  3. A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys. Usp., 44, 131–136 (2001).

    Article  ADS  Google Scholar 

  4. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, “Non-Abelian statistics and topological quantum information processing in 1D wire networks,” Nature Phys., 7, 412–417 (2011).

    Article  ADS  Google Scholar 

  5. Z. H. Wang, Topological Quantum Computation (Conference Board of the Mathematical Sciences. Regional Conference Series in Mathematics, Vol. 112), AMS, Providence, RI (2008).

    Google Scholar 

  6. L.-W. Yu and M.-L. Ge, “More about the doubling degeneracy operators associated with Majorana fermions and Yang–Baxter equation,” Sci. Rep., 5, 8102, 7 pp. (2015).

    Article  Google Scholar 

  7. X.-M. Zhao, J. Yu, J. He, Q.-B. Chen, Y. Liang, and S.-P. Kou, “The simulation of non-Abelian statistics of Majorana fermions in Ising chain with Z2 symmetry,” Modern Phys. Lett. B, 31, 1750123, 10 pp. (2017); arXiv: 1602.07444.

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Long and Y. Yue, “An anyon model in a toric honeycomb lattice,” Commun. Theor. Phys., 55, 80–84 (2011); arXiv: 1006.0804.

    Article  ADS  Google Scholar 

  9. A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann. Phys., 303, 2–30 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Yu. Kitaev, “Anyons in an exactly solved model and beyond,” Ann. Phys., 321, 2–111 (2006); arXiv: cond-mat/0506438.

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Modern Phys., 80, 1083–1159 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Lee and F. Wilczek, “Algebra of Majorana doubling,” Phys. Rev. Lett., 111, 226402, 4 pp. (2013); arXiv: 1307.3245.

    Article  ADS  Google Scholar 

  13. X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, “Time-reversal-invariant topological superconductors and superfluids in two and three dimensions,” Phys. Rev. Lett., 102, 187001, 4 pp. (2009); arXiv: 0803.3614.

    Article  ADS  Google Scholar 

  14. T. H. Hsieh, G. B. Halász, and T. Grover, “All Majorana models with translation symmetry are supersymmetric,” Phys. Rev. Lett., 117, 166802, 6 pp. (2016); arXiv: 1604.08591.

    Article  ADS  Google Scholar 

  15. R. U. Haq and L. H. Kauffman, “\(Z_2\) topological order and topological protection of Majorana fermion qubits,” Condens. Matter, 6, 11, 22 pp. (2021).

    Article  Google Scholar 

  16. L. Van Hove, “Supersymmetry and positive temperature for simple systems,” Nucl. Phys. B, 207, 15–28 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Parthasarathy and R. Sridhar, “Supersymmetry in thermofield dynamics,” Phys. Lett. A, 279, 17–22 (2001).

    Article  ADS  Google Scholar 

  18. F. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson, and A. E. Santana, Thermal Quantum Field Theory: Algebraic Aspects and Applications, World Sci., Singapore (2009).

    Book  Google Scholar 

  19. V. G. Kac, “Lie superalgebras,” Adv. Math., 26, 8–96 (1977).

    Article  Google Scholar 

  20. M. R. de Traubenberg, “Clifford algebras in physics,” Adv. Appl. Clifford Alg., 19, 869–908 (2009).

    Article  MathSciNet  Google Scholar 

  21. M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications (Lecture Notes in Mathematics, Vol. 128), Springer, Berlin, Heidelberg (1970).

    Book  Google Scholar 

  22. I. Ojima, “Gauge fields at finite temperatures – ‘Thermo field dynamics’ and the KMS condition and their extension to gauge theories,” Ann. Phys., 137, 1–32 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  23. O. Bratelli and D. W. Robinson, Operators Algebras and Quantum Statistical Mechanics: Equilibrium States Models in Quantum Statistical Mechanics, Vols. 1, 2 (Texts and Monographs in Physics) Springer, Berlin (1997).

    Book  Google Scholar 

  24. A. E. Santana, A. M. Neto, J. D. M. Vianna, and F. C. Khanna, “w\(^{*}\)-Algebra, Poincare group, and quantum kinetic theory,” Internat. J. Theor. Phys., 38, 641–651 (1999).

    Article  MathSciNet  Google Scholar 

  25. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Floquet.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 502–514 https://doi.org/10.4213/tmf10106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trindade, M.A.S., Floquet, S. Majorana fermions, supersymmetry, and thermofield dynamics. Theor Math Phys 209, 1747–1757 (2021). https://doi.org/10.1134/S0040577921120072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921120072

Keywords

Navigation