Skip to main content
Log in

Fractional derivative method for describing solitons on the surface of deep water

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The fractional derivative method is used to take wave dispersion into account in the wave equation when describing the propagation of gravitational soliton waves on the surface of deep water. This approach is similar to that used to obtain the Korteweg–de Vries equation for solitons on the surface of shallow water, where the dispersion term in the wave equation is the third derivative of the velocity. It provides an alternative to the well-known approach of Zakharov and others based on the model of the nonlinear Schrödinger equation. The obtained nonlinear integral equation can be solved numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. J. Lighthill, “Some special cases treated by the Whitham theory,” Proc. Roy. Soc. London Ser. A, 299, 28–53 (1967).

    ADS  Google Scholar 

  2. D. J. Benney and A. C. Newell, “The propagation of nonlinear envelopes,” J. Math. Phys., 46, 133–139 (1967).

    Article  MathSciNet  Google Scholar 

  3. V. H. Chu and C. C. Mei, “The non-linear evolution of Stokes waves in deep water,” J. Fluid Mech., 47, 337–351 (1971).

    Article  ADS  Google Scholar 

  4. H. C. Yuen and B. M. Lake, “Nonlinear deep water waves: Theory and experiment,” Phys. Fluids, 18, 956–950 (1975).

    Article  ADS  Google Scholar 

  5. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” Soviet Phys. JETP, 34, 62–69 (1972).

    ADS  MathSciNet  Google Scholar 

  6. J. E. Feir, “Discussion: some results from wave pulse experiments,” Proc. Roy. Soc. London Ser. A, 299, 54–58 (1967).

    ADS  Google Scholar 

  7. B. I. Cohen, K. M. Watson, and B. J. West, “Some properties of deep water solitons,” Phys. Fluids, 19, 345–354 (1976).

    Article  ADS  Google Scholar 

  8. St. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993).

    MATH  Google Scholar 

  9. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to nonlinear physics. From the pendulum to turbulence and chaos, Nauka, Moscow (1988).

    MATH  Google Scholar 

  10. V. P. Krainov, Lecture on Selected Problems of Continuum Mechanics, Intellekt, Dolgoprudnyi (2014).

    Google Scholar 

  11. A. Slunyaev, G. F. Clauss, M. Klein, and M. Onorato, “Simulations and experiments of short intense envelope solitons of surface water waves,” Phys. Fluids, 25, 067105, 32 pp. (2013).

    Article  ADS  Google Scholar 

  12. A. Cazaubiel, G. Michel, S. Lepot, B. Semin, S. Aumaître, M. Berhanu, F. Bonnefoy, and E. Falcon, “Coexistence of solitons and extreme events in deep water surface waves,” Phys. Rev. Fluids, 3, 114802, 21 pp. (2018); arXiv: 1810.07922.

    Article  ADS  Google Scholar 

  13. D. I. Kachulin, A. I. Dyachenko, and S. Dremov, “Multiple soliton interactions on the surface of deep water,” Fluids, 5, 65, 10 pp. (2020).

    Article  Google Scholar 

  14. A. Gelash, D. Agafontsev, V. Zakharov, G. El, S. Randoux, and P. Suret, “Bound state soliton gas dynamics underlying the noise-induced modulational instability,” Phys. Rev. Lett., 123, 234102, 7 pp. (2019); arXiv: 1907.07914.

    Article  ADS  Google Scholar 

  15. P. Suret, A. Tikan, F. Bonnefoy, F. Copie, G. Ducrozet, A. Gelash, G. Prabhudesai, G. Michel, A. Cazaubiel, E. Falcon, G. El, and St. Randoux, “Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves,” Phys. Rev. Lett., 125, 264101, 6 pp. (2020); arXiv: 2006.16778.

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the Russian Foundation for Basic Research (Grant No. 20-52-05012), the Committee on Science of Armenia (Grant No. 20RF-171), and the Armenian National Foundation for Science and Education (Grant No. PS-5701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krainov.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 409–415 https://doi.org/10.4213/tmf10091.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avrutskiy, V.I., Ishkhanyan, A.M. & Krainov, V.P. Fractional derivative method for describing solitons on the surface of deep water. Theor Math Phys 208, 1201–1206 (2021). https://doi.org/10.1134/S0040577921090038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921090038

Keywords

Navigation