Skip to main content
Log in

The \(\text{m}\)KdV-type equations related to \(A_5^{(1)}\) and \(A_5^{(2)}\) Kac–Moody algebras

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We explain the details of the algebraic constructions on nontrivial examples of the mKdV equations related to the \(A_5^{(1)}\) and \(A_5^{(2)}\) Kac–Moody algebras. Several types of recursion operators appear naturally in formulating the equations and their Hamiltonian structures. We next introduce the resolvent of the Lax operator and demonstrate that it generates the hierarchy of the Lax representations and also the hierarchy of conservation laws of these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform–Fourier analysis for nonlinear problems,” Stud. Appl. Math., 53, 249–315 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. J. Kaup, “Closure of the squared Zakharov–Shabat eigenstates,” J. Math. Anal. Appl., 54, 849–864 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. S. Gerdjikov and E. Kh. Khristov, “On the evolution equations, solvable through the inverse scattering method: I. Spectral theory,” Bulgar. J. Phys., 7, 28–41 (1980); “On the evolution equations, solvable through the inverse scattering method: II. Hamiltonian structure and Bäcklund transformations,” Bulgar. J. Phys., 7, 119–133 (1980).

    MathSciNet  Google Scholar 

  4. V. S. Gerdjikov and P. P. Kulish, “The generating operator for the \(n{\times}n\) linear system,” Phys. D, 3, 549–564 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. S. Gerdjikov, “Algebraic and analytic aspects of \(N\)-wave type equations,” in: The Legacy of the Inverse Scattering Transform in Applied Mathematics (Contemp. Math., Vol. 301, J. Bona, R. Choudhury, and D. Kaup, eds.), Amer. Math. Soc., Providence, R. I. (2002), pp. 35–68.

    Article  MATH  Google Scholar 

  6. V. S. Gerdjikov and A. B. Yanovski, “CBC systems with Mikhailov reductions by Coxeter automorphism: I. Spectral theory of the recursion operators,” Stud. Appl. Math., 134, 145–180 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. V. Mikhailov, “Integrability of the two-dimensional generalization of Toda chain,” JETP Lett., 30, 414–418 (1979).

    ADS  Google Scholar 

  8. A. V. Mikhailov, “The reduction problem and the inverse scattering method,” Phys. D, 3, 73–117 (1981).

    Article  MATH  Google Scholar 

  9. V. S. Gerdjikov, “\(Z_N\)-reductions and new integrable versions of derivative nonlinear Schrödinger equations,” in: Nonlinear Evolution Equations: Integrability and Spectral Methods, (A. P. Fordy, A. Degasperis, and M. Lakshmanan, eds.), Manchester Univ. Press, Manchester, UK (1981), pp. 367–379.

    MATH  Google Scholar 

  10. V. S. Gerdjikov, “Derivative nonlinear Schrödinger equations with \( \mathbb{Z} _N\) and \(\mathbb{D}_N \)-reductions,” Romanian J. Phys., 58, 573–582 (2013).

    MathSciNet  Google Scholar 

  11. D. J. Kaup and A. C. Newell, “Soliton equations, singular dispersion relations, and moving eigenvalues,” Adv. Math., 31, 67–100 (1979).

    Article  MATH  Google Scholar 

  12. V. G. Drinfel’d and V. V. Sokolov, “Equations of Korteweg–de Vries type and simple Lie algebras,” Sov. Math. Dokl., 23, 457–462 (1981).

    MATH  Google Scholar 

  13. V. G. Drinfel’d and V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type,” J. Soviet Math., 30, 1975–2036 (1985).

    Article  MATH  Google Scholar 

  14. V. E. Zakharov and A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method,” Sov. Phys. JETP, 47, 1017–1027 (1978).

    ADS  Google Scholar 

  15. F. Calogero and F. Degasperis, Spectral Transform and Solitons, Vol. 1, Tools to Solve and Investigate Nonlinear Evolution Equations (Lect. Notes Computer Sci., Vol. 144), North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  16. L. A. Takhtadjan and L. D. Faddeev, Hamiltonian Approach to the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (2007).

    Google Scholar 

  17. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York (1984).

    MATH  Google Scholar 

  18. V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, and S. K. Varbev, “Integrable equations and recursion operators related to the affine Lie algebras \(A^{(1)}_r\),” J. Math. Phys., 56, 052702 (2015); arXiv:1411.0273v1 [nlin.SI] (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, and S. K. Varbev, “MKdV-type of equations related to \(B_2^{(1)}\) and \(A_4^{(2)}\) algebra,” in: Nonlinear Mathematical Physics and Natural Hazards (Springer Proc. Phys., Vol. 163, B. Aneva and M. Kouteva-Guentcheva, eds.), Springer, Cham (2015), pp. 59–69.

    MATH  Google Scholar 

  20. V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, and S. K. Varbev, “MKdV-type of equations related to \(\mathfrak{sl}(N, \mathbb{C} )\) algebra,” in: Mathematics in Industry (A. Slavova, ed.), Cambridge Scholars Publ., Cambridge (2014), pp. 335–344.

    Google Scholar 

  21. V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, and S. K. Varbev, “On a one-parameter family of mKdV equations related to the \(\mathfrak{so}(8)\) Lie algebra,” in: Mathematics in Industry (A. Slavova, ed.), Cambridge Scholars Publ., Cambridge (2014), pp. 345–354.

    Google Scholar 

  22. V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, and S. K. Varbev, “On mKdV equations related to the affine Kac–Moody algebra \(A^{(2)}_5\),” J. Geom. Symmetry Phys., 39, 17–31 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. S. Gerdjikov, A. A. Stefanov, I. D. Iliev, G. P. Boyadjiev, A. O. Smirnov, V. B. Matveev, and M. V. Pavlov, “Recursion operators and hierarchies of \(\text{mKdV}\) equations related to the Kac–Moody algebras \(D_4^{(1)}\), \(D_4^{(2)}\), and \(D_4^{(3)}\),” Theor. Math. Phys., 204, 1110–1129 (2020).

    Article  MATH  Google Scholar 

  24. V. S. Gerdjikov, G. Vilasi, and A. B. Yanovski, Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods (Lect. Notes Phys., Vol. 748), Springer, Berlin (2008).

    Book  MATH  Google Scholar 

  25. V. S. Gerdjikov and A. B. Yanovski, “On soliton equations with \( \mathbb{Z} _h\) and \(\mathbb{D}_h\) reductions: Conservation laws and generating operators,” J. Geom. Symmetry Phys., 31, 57–92 (2013).

    MathSciNet  MATH  Google Scholar 

  26. S. Helgasson, Differential Geometry, Lie Groups, and Symmetric Spaces (Grad. Stud. Math., Vol. 34), Amer. Math. Soc., Providence, R. I. (2012).

    Google Scholar 

  27. V. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge (1990).

    Book  MATH  Google Scholar 

  28. R. Carter, Lie Algebras of Finite and Affine Type (Cambridge Stud. Adv. Math., Vol. 96), Cambridge Univ. Press, Cambridge (2005).

    Book  MATH  Google Scholar 

  29. E. B. Dynkin, “The structure of semi-simple algebras,” Uspekhi Mat. Nauk, 2, No. 4(20), 59–127 (1947).

    MathSciNet  MATH  Google Scholar 

  30. V. S. Gerdjikov and A. B.Yanovski, “Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system,” J. Math. Phys., 35, 3687–3725 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations: Gauge-covariant formulation,” Inverse Problems, 2, 51–74 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. B. Shabat, “The inverse scattering problem [in Russian],” Differentsial’nye Uravneniya, 15, 1824–1834 (1979).

    Google Scholar 

  33. R. Beals and R. R. Coifman, “Inverse scattering and evolution equations,” Commun. Pure Appl. Math., 38, 29–42 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Yanovski, “Recursion operators and expansions over adjoint solutions for the Caudrey–Beals–Coifman system with \( \mathbb{Z} _p\) reductions of Mikhailov type,” J. Geom. Symmetry Phys., 30, 105–120 (2013).

    MathSciNet  MATH  Google Scholar 

  35. V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I,” Funct. Anal. Appl., 8, 226–235 (1974); “Integration of nonlinear equations of mathematical physics by the method of inverse scattering II,” Funct. Anal. Appl., 13, 166–174 (1979).

    Article  MATH  Google Scholar 

  36. L. A. Dickey, Soliton Equations and Hamiltonian Systems (Adv. Series Math. Phys., Vol. 12), World Scientific, Singapore (1991).

    Book  MATH  Google Scholar 

  37. A. De Sole, M. Jibladze, V. G. Kac, and D. Valeri, “Integrability of classical affine \(W\)-algebras,” arXiv: 2007.01244v2 [math-ph] (2020).

  38. A. De Sole, V. G. Kac, and D. Valeri, “Classical \(\mathcal W\)-algebras and generalized Drinfeld–Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras,” Commun. Math. Phys., 323, 663–711 (2013); arXiv:1207.6286v4 [math-ph] (2012); “Classical affine \(\mathcal W\)-algebras for \(\mathfrak{gl}(N)\) and associated integrable Hamiltonian hierarchies,” Commun. Math. Phys., 348, 265–319 (2016); arXiv:1509.06878v3 [math-ph] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. N. J. Burroughs, M. F. de Groot, T. J. Hollowood, and J. L. Miramontes, “Generalized Drinfel’d–Sokolov hierarchies: II. The Hamiltonian structures,” Commun. Math. Phys., 153, 187–215 (1993).

    Article  ADS  MATH  Google Scholar 

  40. M. F. de Groot, T. J. Hollowood, and J. L. Miramontes, “Generalized Drinfel’d–Sokolov hierarchies,” Commun. Math. Phys., 145, 57–84 (1992).

    Article  ADS  MATH  Google Scholar 

  41. V. S. Gerdjikov, R. Ivanov, and A. Stefanov, “Riemann–Hilbert problem, integrability, and reductions,” J. Geom. Mech., 11, 167–185 (2019); arXiv:1902.10276v2 [nlin.SI] (2019).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. V. Mikhailov, V. V. Sokolov, and A. B. Shabat, “The symmetry approach to classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin, 113–184 (1991).

    MATH  Google Scholar 

  43. A. V. Mikhailov, J. P. Wang, and V. S. Novikov, “Partially integrable nonlinear equations with one high symmetry,” J. Phys. A: Math. Gen., 38, L337–L341 (2005).

    Article  MATH  Google Scholar 

  44. A. V. Mikhailov, V. S. Novikov, and J. P. Wang, “Symbolic representation and classification of integrable systems,” in: Algebraic Theory of Differential Equations (London Math. Soc. Lect. Note Series., Vol. 357, M. A. H. MacCallum and A. Mikhailov, eds.) Cambridge, Cambridge Univ. Press, (2008), pp. 156–216.

    Article  MATH  Google Scholar 

  45. G. Zhao, “Integrability of two-component systems of partial differential equations,” Doctoral dissertation, Loughborough University, Loughborough, UK (unpublished).

Download references

Funding

The research of V. S. Gerdjikov is supported by the Bulgarian National Science Foundation (Contract No. KP-06N42-2).

The research of D. M. Mladenov was supported in part by the Bulgarian National Science Fund (Research Grant No. DN 18/3).

The research of A. A. Stefanov was supported in part by the Bulgarian National Science Fund (Research Grant No. DN 18/3) and the Bulgarian National Science Foundation (Contract No. KP-06N42-2).

The research of S. K. Varbev is supported by the Bulgarian Ministry of Education and Science under the National Research Programme “Young scientists and postdoctoral researchers” approved by DCM No. 577/17.08.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gerdjikov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 237-260 https://doi.org/10.4213/tmf10049.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerdjikov, V.S., Mladenov, D.M., Stefanov, A.A. et al. The \(\text{m}\)KdV-type equations related to \(A_5^{(1)}\) and \(A_5^{(2)}\) Kac–Moody algebras. Theor Math Phys 207, 604–625 (2021). https://doi.org/10.1134/S0040577921050068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921050068

Keywords

Navigation