Skip to main content
Log in

WKB expansion for a Yang–Yang generating function and the Bergman tau function

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study symplectic properties of the monodromy map of second-order equations on a Riemann surface whose potential is meromorphic with double poles. We show that the Poisson bracket defined in terms of periods of the meromorphic quadratic differential implies the Goldman Poisson structure on the monodromy manifold. We apply these results to a WKB analysis of this equation and show that the leading term in the WKB expansion of the generating function of the monodromy symplectomorphism (the Yang–Yang function introduced by Nekrasov, Rosly, and Shatashvili) is determined by the Bergman tau function on the moduli space of meromorphic quadratic differentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. N. S. Hawley and M. Schiffer, “Half-order differentials on Riemann surfaces,” Acta Math., 115, 199–236 (1966).

    Article  MathSciNet  Google Scholar 

  2. A. Beilinson and V. Drinfeld, “Opers,” arXiv:math/0501398v1 (2005).

  3. J. D. Fay, Theta-Functions on Riemann Surfaces (Lect. Notes Math., Vol. 352), Springer, Berlin (1973).

    Book  Google Scholar 

  4. M. Bertola, D. Korotkin, and C. Norton, “Symplectic geometry of the moduli space of projective structures in homological coordinates,” Invent. Math., 210, 759–814 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Gaiotto and J. Teschner, “Irregular singularities in Liouville theory and Argyres–Douglas type gauge theories,” JHEP, 1212, 50 (2012); arXiv:1203.1052v1 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Korotkin, “Periods of meromorphic quadratic differentials and Goldman bracket,” in: Topological Recursion and Its Influence in Analysis, Geometry, and Topology (Proc. Symp. Pure Math., Vol. 100, M. L. Chiu–Chu and M. Mulase, eds.), Amer. Math. Soc., Providence, R. I. (2016), pp. 491–516.

    MATH  Google Scholar 

  7. D. G. L. Allegretti and T. Bridgeland, “The monodromy of meromorphic projective structures,” Trans. Amer. Math. Soc., 373, 6321–6367 (2020).

    Article  MathSciNet  Google Scholar 

  8. D. G. L. Allegretti, “Voros symbols as cluster coordinates,” J. Topol., 12, 1031–1068 (2019).

    Article  MathSciNet  Google Scholar 

  9. D. Quillen, “Determinants of Cauchy–Riemann operators over a Riemann surface,” Funct. Anal. Appl., 19, 31–34 (1985).

    Article  Google Scholar 

  10. A. Kokotov and D. Korotkin, “Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray–Singer formula,” J. Differ. Geom., 82, 35–100 (2009).

    MathSciNet  MATH  Google Scholar 

  11. V. G. Knizhnik, “Analytic fields on Riemann surfaces: II,” Commun. Math. Phys., 112, 567–590 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. G. Knizhnik, “Multiloop amplitudes in the theory of quantum strings and complex geometry,” Sov. Phys. Uspekhi, 32, 945–971 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Eynard and N. Orantin, “Invariants of algebraic curves and topological expansion,” Commun. Number Theory Phys., 1, 347–452 (2007).

    Article  MathSciNet  Google Scholar 

  14. D. Korotkin and P. Zograf, “Tau-function and Prym class,” in: Algebraic and Geometric Aspects of Integrable Systems and Random Matrices (Contemp. Math., Vol. 593, A. Dzhamay, K. Maruno, and V. U. Pierce, eds.), Amer. Math. Soc., Providence, R. I. (2013), pp. 241–261.

    MathSciNet  MATH  Google Scholar 

  15. M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function,” Commun. Math. Phys., 147, 1–23 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Bertola and D. Korotkin, “Hodge and Prym tau functions, Strebel differentials, and combinatorial model of \({ \mathcal{M} }_{g,n}\),” Commun. Math. Phys., 378, 1279–1341 (2020).

    Article  MathSciNet  Google Scholar 

  17. D. Korotkin, “Bergman tau function: From Einstein equations and Dubrovin–Frobenius manifolds to geometry of moduli spaces,” in: Integrable Systems and Algebraic Geometry, Vol. 2 (London Math. Soc. Lect. Note Ser., Vol. 459, R. Donagi and T. Shaska, eds.), Cambridge Univ. Press, Cambridge (2020), pp. 215–287; arXiv:1812.03514v2 [math-ph] (2018).

    Article  Google Scholar 

  18. W. Goldman, “The symplectic nature of fundamental groups of surfaces,” Adv. Math., 54, 200–225 (1984).

    Article  MathSciNet  Google Scholar 

  19. N. Nekrasov, A. Rosly, and S. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory,” Nucl. Phys. B. Proc. Suppl., 216, 69–93 (2011); arXiv:1103.3919v2 [hep-th] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Bertola and D. Korotkin, “Tau-function and monodromy symplectomorphisms,” arXiv:1910.03370v4 [math.SG] (2019).

  21. D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin systems, and the WKB approximation,” Adv. Math., 234, 239–403 (2013); arXiv:0807.4723v3 [hep-th] (2008).

    Article  MathSciNet  Google Scholar 

  22. M. Bertola and D. Korotkin, “Extended Goldman symplectic structure in Fock–Goncharov coordinates,” arXiv:arXiv/1910.06744v8 [math-ph] (2019).

  23. L. O. Chekhov, “Symplectic structures on Teichmüller spaces \(\mathfrak T_{g,s,n}\) and cluster algebras,” Proc. Steklov Inst. Math., 309, 87–96 (2020).

    Article  Google Scholar 

  24. J. D. Fay, Kernel Functions, Analytic Torsion, and Moduli Spaces (Mem. Amer. Math. Soc., Vol. 96, No. 464), Amer. Math. Soc., Providence, R. I. (1992).

    Book  Google Scholar 

  25. C. Kalla and D. Korotkin, “Baker–Akhiezer spinor kernel and tau-functions on moduli spaces of meromorphic differentials,” Commun. Math. Phys., 331, 1191–1235 (2014); arXiv:1307.0481v2 [nlin.SI] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Kawai and Y. Takei, Algebraic Analysis of Singular Perturbation Theory (Transl. Math. Monogr., Vol. 227), Amer. Math. Soc., Providence, R. I. (2005).

    Book  Google Scholar 

  27. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations (Pure Appl. Math., Vol. 14), John Wiley and Sons, New York (1966).

    MATH  Google Scholar 

  28. P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory,” Commun. Pure Appl. Math., 52, 1335–1425 (1999).

    Article  MathSciNet  Google Scholar 

  29. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972).

    MATH  Google Scholar 

  30. L. Chekhov, B. Eynard, and N. Orantin, “Free energy topological expansion for the 2-matrix model,” JHEP, 0612, 053 (2006); arXiv:math-ph/0603003v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Bridgeland, “Riemann–Hilbert problems from Donaldson–Thomas theory,” Invent. Math., 216, 69–124 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  32. W. P. Thurston, The Geometry and Topology of Three-Manifolds http://library.msri.org/books/gt3m/ (2002).

    Google Scholar 

  33. V. V. Fock, “Dual Teichmüller spaces,” arXiv:dg-ga/9702018v3 (1997).

  34. L. Chekhov, “Lecture notes on quantum Teichmüller theory,” arXiv:0710.2051v1 [math.AG] (2007).

  35. K. Iwaki and T. Nakanishi, “Exact WKB analysis and cluster algebras,” J. Phys. A: Math. Theor., 47, 474009 (2014).

    Article  MathSciNet  Google Scholar 

  36. K. Iwaki and T. Nakanishi, “Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras,” Internat. Math. Res. Not., 2016, 4375–4417 (2016).

    Article  MathSciNet  Google Scholar 

  37. T. Bridgeland and I. Smith, “Quadratic differentials as stability conditions,” Publ. Math. Inst. Hautes Études Sci., 121, 155–278 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank D. Allegretti, T. Bridgeland, A. Nietzke, and C. Norton for the illuminating discussions.

Funding

This research was supported by the National Science Foundation (Grant No. DMS-1440140) while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2019 semester Holomorphic Differentials in Mathematics and Physics. The research that led to the present paper was supported in part by a grant of the Gruppo Nazionale per la Fisica Matematica (GNFM), INdAM.

The research of M. Bertola was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC Grant No. RGPIN-2016-06660).

The research of D. A. Korotkin was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC Grant No. RGPIN/3827-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Korotkin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Dedicated to the memory of Boris Dubrovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertola, M., Korotkin, D.A. WKB expansion for a Yang–Yang generating function and the Bergman tau function. Theor Math Phys 206, 258–295 (2021). https://doi.org/10.1134/S0040577921030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921030028

Keywords

Navigation