Skip to main content
Log in

Dynamics of the Friedmann universe with boundary terms added to the action

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of the universe following from the variational principle with boundary terms added to the action. We calculate a scalar function that effectively accounts for the contribution of these boundary terms to the density and pressure of the medium filling the universe. An interesting result of the proposed approach is that a superfast expansion stage arises automatically (without additional conditions). We show the connection between the description of inflationary expansion based on the scalar field and our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, New York (1972).

    Google Scholar 

  2. A. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., 116, 1009–1038 (1998); arXiv:astro-ph/9805201v1 (1998).

    Article  Google Scholar 

  3. S. Perlmutter, G. Aldering, and G. Goldhaber, “Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae,” Astrophys. J., 517, 565–586 (1999); arXiv:astro-ph/9812133v1 (1998).

    Article  ADS  Google Scholar 

  4. Yu. L. Bolotin, D. A. Erokhin, and O. A. Lemets, “Expanding Universe: Slowdown or speedup?” Phys. Usp., 55, 876–918 (2012).

    Article  Google Scholar 

  5. S. Carneiro, M. A. Dantas, C. Pigozzo, and J. S. Alcaniz, “Observational constraints on late-time \(\Lambda(t)\) cosmology,” Phys. Rev. D, 77, 083504 (2008); arXiv:0711.2686v2 [astro-ph] (2007).

    Article  ADS  Google Scholar 

  6. M. Bronstein, “On the expanding universe,” Phys. Z. Sowjetunion, 3, 73–82 (1933).

    MATH  Google Scholar 

  7. M. Özer and M. O. Taha, “A possible solution to the main cosmological problems,” Phys. Lett. B, 171, 363–365 (1986).

    Article  ADS  Google Scholar 

  8. K. Freese, F. C. Adams, J. A. Frieman, and E. Mottola, “Cosmology with decaying vacuum energy,” Nucl. Phys. B, 287, 797–814 (1987).

    Article  ADS  Google Scholar 

  9. W. Chen and Y-S. Wu, “Implications of a cosmological constant varying as \(R^{-2}\),” Phys. Rev. D, 41, 695–698 (1990).

    Article  ADS  Google Scholar 

  10. J. C. Carvalho, J. A. S. Lima, and I. Waga, “Cosmological consequences of a time-dependent \(\Lambda\) term,” Phys. Rev. D, 46, 2404–2407 (1992).

    Article  ADS  Google Scholar 

  11. A.-M. M. Abdel-Rahman, “Singularity-free decaying-vacuum cosmologies,” Phys. Rev. D, 45, 3497–3511 (1992).

    Article  ADS  Google Scholar 

  12. J. A. S. Lima and M. Trodden, “Decaying vacuum energy and deflationary cosmology in open and closed universes,” Phys. Rev. D, 53, 4280–4286 (1996); arXiv:astro-ph/9508049v1 (1995).

    Article  ADS  Google Scholar 

  13. J. M. Overduin and F. I. Cooperstock, “Evolution of the scale factor with a variable cosmological term,” Phys. Rev. D, 58, 043506 (1998); arXiv:astro-ph/9805260v1 (1998).

    Article  ADS  Google Scholar 

  14. C. S. Weinberg, “The cosmological constant problem,” Rev. Modern Phys., 61, 1–23 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  15. G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D, 15, 2752–2756 (1977).

    Article  ADS  Google Scholar 

  16. Y.-F. Cai, J. Liu, and H. Li, “Entropic cosmology: A unified model of inflation and late-time acceleration,” Phys. Lett. B, 690, 213–219 (2010); arXiv:1003.4526v2 [astro-ph.CO] (2010).

    Article  ADS  Google Scholar 

  17. D. A. Easson, P. H. Frampton, and G. F. Smoot, “Entropic accelerating universe,” Phys. Lett. B, 696, 273–277 (2011); arXiv:1002.4278v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  18. C. A. Sporea, “Notes on \(f(R)\) theories of gravity,” arXiv:1403.3852v2 [gr-qc] (2014).

  19. N. J. Poplawski, “Interacting dark energy in \(f(R)\) gravity,” Phys. Rev. D, 74, 084032 (2006); arXiv:gr-qc/0607124v3 (2006).

    Article  ADS  Google Scholar 

  20. N. J. Poplawski, “A Lagrangian description of interacting dark energy,” arXiv:gr-qc/0608031v2 (2006).

  21. S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: From \(F(R)\) theory to Lorentz non-invariant models,” Phys. Rep., 505, 59–144 (2011); arXiv:1011.0544v4 [gr-qc] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Linde, “Inflation, quantum cosmology, and the anthropic principle,” in: Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity (J. D. Barrow, P. C. W. Davies, and C. L. Harper Jr., eds.), Cambridge Univ. Press, Cambridge (2011), pp. 426–458; arXiv:hep-th/0211048v2 (2002).

    MATH  Google Scholar 

  23. S. V. Chernov, I. V. Fomin, and A. Beesham, “The method of generating functions in exact scalar field cosmology,” Eur. Phys. J. C, 78, 301 (2018); arXiv:1704.08712v2 [gr-qc] (2017).

    Article  ADS  Google Scholar 

  24. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, “Early dark energy can resolve the Hubble tension,” Phys. Rev. Lett., 122, 221301 (2019); arXiv:1811.04083v2 [astro-ph.CO] (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Yu. V. Pavlov, S. A. Paston, and S. M. Gerasyuta for the useful discussions during the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kochkin.

Ethics declarations

The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochkin, V.I. Dynamics of the Friedmann universe with boundary terms added to the action. Theor Math Phys 206, 236–242 (2021). https://doi.org/10.1134/S0040577921020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921020094

Keywords

Navigation