Skip to main content
Log in

Projectors on invariant subspaces of representations \(\mathrm{ad}^{\otimes2}\) of Lie algebras \(so(N)\) and \(sp(2r)\) and Vogel parameterization

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the split Casimir operator, we find explicit formulas for the projectors onto invariant subspaces of the \( \mathrm{ad} ^{ \otimes 2}\) representation of the algebras \(so(N)\) and \(sp(2r)\). We also consider these projectors from the standpoint of the universal description of complex simple Lie algebras using the Vogel parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The first of those equalities is a consequence of the fact that for each \(U\in \mathcal{U} ( \mathcal{A} )\), \((T_1 \otimes T_2)\Delta(U)\) commutes with the projectors \(P_\lambda\), which distinguish the irreducible subrepresentations of \((T_1 \otimes T_2)\) and are hence ad-invariant operators.

References

  1. J. B. McGuire, “Study of exactly soluble one-dimensional \(N\)-body problems,” J. Math. Phys., 5, 622–636 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Phys. Rev. Lett., 19, 1312–1315 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, New York (1982).

    MATH  Google Scholar 

  4. A. B. Zamolodchikov and Al. B. Zamolodchikov, “Factorized \(S\)-matrices in two dimensions as the exact solutions of certain relativistic quantum field models,” Ann. Phys. (N. Y.), 120, 253–291 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  5. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method: I,” Theor. Math. Phys., 40, 688–706 (1979).

    Article  MathSciNet  Google Scholar 

  6. V. G. Drinfeld, “Quantum groups,” in: Proc. International Congress of Mathematicians (Berkeley, California, USA, 3–11 August 1986, A. M. Gleason, ed.), Vol. 1, Amer. Math. Soc., Providence, R. I. (1986), pp. 798–820.

    Google Scholar 

  7. M. Jimbo, “A \(q\)-analogue of \(U(\mathfrak{gl}(N+1))\), Hecke algebra, and the Yang–Baxter equation,” Lett. Math. Phys., 11, 247–252 (1986); “Introduction to the Yang–Baxter equation,” Internat. J. Modern Phys. A, 4, 3759–3777 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Pasquier and H. Saleur, “Common structures between finite systems and conformal field theories through quantum groups,” Nucl. Phys. B, 330, 523–556 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Karowski and A. Zapletal, “Quantum-group-invariant integrable \(n\)-state vertex models with periodic boundary conditions,” Nucl. Phys. B, 419, 567–588 (1994); arXiv:hep-th/9312008v1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. P. P. Kulish, “Quantum groups and quantum algebras as symmetries of dynamical systems,” Preprint YITP/K-959, Yukawa Institute for Theoretical Physics, Kyoto (1991).

  11. L. Faddeev, N. Reshetikhin, and L. Takhtajan, “Quantization of Lie groups and Lie algebras,” Leningrad Math. J., 1, 193–225 (1990).

    MathSciNet  MATH  Google Scholar 

  12. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge (1994).

    MATH  Google Scholar 

  13. A. P. Isaev, “Quantum groups and Yang–Baxter equations,” Preprint MPI 2004-132, http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf, MPI, Bonn (2004).

  14. P. Vogel, “The universal Lie algebra,” Preprint, Université Paris VII, UFR de mathématiques, Paris (1999).

  15. P. Deligne, “La série exceptionnelle des groupes de Lie,” C. R. Acad. Sci. Paris Sér. I Math., 322, 321–326 (1996).

    MathSciNet  MATH  Google Scholar 

  16. J. M. Landsberg and L. Manivel, “A universal dimension formula for complex simple Lie algebras,” Adv. Math., 201, 379–407 (2006).

    Article  MathSciNet  Google Scholar 

  17. R. L. Mkrtchyan, A. N. Sergeev, and A. P. Veselov, “Casimir eigenvalues for universal Lie algebra,” J. Math. Phys., 53, 102106 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. M. Landsberg and L. Manivel, “Triality, exceptional Lie algebras, and Deligne dimension formulas,” Adv. Math., 171, 59–85 (2002).

    Article  MathSciNet  Google Scholar 

  19. A. Mironov, R. Mkrtchyan, and A. Morozov, “On universal knot polynomials,” JHEP, 1602, 78 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. P. Isaev and V. A. Rubakov, Theory of Groups and Symmetries: Finite Groups, Lie Groups and Algebras [in Russian], KRASAND, Moscow (2018); English transl.: Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras, World Scientific, Singapore (2018).

    Book  Google Scholar 

  21. R. Feger and Th. W. Kephart, “LieART – A Mathematica application for Lie algebras and representation theory,” Comput. Phys. Commun., 92, 166–195 (2015); arXiv:1206.6379v2 [math-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Yamatsu, “Finite-dimensional Lie algebras and their representations for unified model building,” arXiv:1511.08771v2 [hep-ph] (2015).

  23. P. Cvitanović, Group Theory: Birdtracks, Lie’s and Exceptional Groups, Princeton Univ. Press, Oxford (2008).

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank S. O. Krivonos and O. V. Ogievetsky for the stimulating discussions.

Funding

The research of A. P. Isaev was supported by the Russian Foundation for Basic Research (Grant No. 19-01-00726).

The research of A. A. Provorov was supported by the Russian Foundation for Basic Research (Grant No. 20-52-12003\20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Provorov.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, A.P., Provorov, A.A. Projectors on invariant subspaces of representations \(\mathrm{ad}^{\otimes2}\) of Lie algebras \(so(N)\) and \(sp(2r)\) and Vogel parameterization. Theor Math Phys 206, 1–18 (2021). https://doi.org/10.1134/S0040577921010013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921010013

Keywords

Navigation