A note on pair-dependent linear statistics with a slowly increasing variance


We prove Gaussian fluctuations for pair-counting statistics of the form \(\Sigma_{1\le i\ne j\le N}f(\theta_i-\theta_j)\) for the circular unitary ensemble of random matrices in the large-\(N\) limit under the condition that the variance increases slowly as \(N\) increases.

This is a preview of subscription content, access via your institution.


  1. 1

    F. J. Dyson, “Statistical theory of the energy levels of complex systems: I,” J. Math. Phys., 3, 140–156 (1962); “Statistical theory of the energy levels of complex systems: II,” J. Math. Phys., 3, 157–165 (1962); “Statistical theory of the energy levels of complex systems: III,” J. Math. Phys., 3, 166–175 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    F. J. Dyson, “Correlations between the eigenvalues of a random matrix,” Commun. Math. Phys., 19, 235–250 (1970).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    M. L. Mehta, Random Matrices (Pure Appl. Math., Vol. 142), Elsevier, Amsterdam (2004).

    Google Scholar 

  4. 4

    R. Killip and I. Nenciu, “Matrix models for circular ensembles,” Internat. Math. Res. Not., 2004, 2665–2701 (2004).

    MathSciNet  Article  Google Scholar 

  5. 5

    A. Aguirre, A. Soshnikov, and J. Sumpter, “Pair dependent linear statistics for circular beta ensemble,” Random Matrices Theory Appl., to appear; arXiv:1912.07110v2 [math.PR] (2019).

    Google Scholar 

  6. 6

    H. L. Montgomery, “The pair correlation of zeros of the zeta function,” in: Analytic Number Theory (Proc. Symp. Pure Math., Vol. 24, H. G. Diamond, ed.), Amer. Math. Soc., Providence, R. I. (1973), pp. 181–193.

    MathSciNet  Article  Google Scholar 

  7. 7

    H. L. Montgomery, “Distribution of the zeros of the Riemann zeta function,” in: Proceedings of the International Congress of Mathematicians, Vol. 1 (Vancouver, BC, 1974), Canad. Math. Congress, Montreal, Quebec (1975), pp. 379–381.

    MathSciNet  Google Scholar 

  8. 8

    N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation (Encycl. Math. Its Appl., Vol. 27), Cambridge Univ. Press, Cambridge (1987).

    Google Scholar 

  9. 9

    K. Johansson, “On fluctuations of eigenvalues of random Hermitian matrices,” Duke Math. J., 91, 151–204 (1988); “On Szego’s asymptotic formula for Toeplitz determinants and generalizations,” Doctoral dissertation, Uppsala Universitet, Uppsala, Sweden (1988).

    MathSciNet  Article  Google Scholar 

  10. 10

    P. Diaconis and S. N. Evans, “Linear functionals of eigenvalues of random matrices,” Trans. Amer. Math. Soc., 353, 2615–2633 (2001).

    MathSciNet  Article  Google Scholar 

  11. 11

    A. Soshnikov, “The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities,” Ann. Probab., 28, 1353–1370 (2000).

    MathSciNet  Article  Google Scholar 

  12. 12

    F. Bekerman and A. Lodhia, “Mesoscopic central limit theorem for general \(\beta\)-ensembles,” Ann. Inst. Henri Poincaré Probab. Stat., 54, 1917–1938 (2018).

    MathSciNet  Article  Google Scholar 

  13. 13

    G. Lambert, “Mesoscopic central limit theorem for the circular beta-ensembles and applications,” arXiv: 1902.06611v1 [math.PR] (2019).

  14. 14

    P. Diaconis and M. Shahshhani, “On the eigenvalues of random matrices,” J. Appl. Probab., 31, 49–62 (1994).

    MathSciNet  Article  Google Scholar 

  15. 15

    K. Johansson, “On random matrices from the compact classical groups,” Ann. Math. Ser. 2, 145, 519–545 (1997).

    MathSciNet  Article  Google Scholar 

  16. 16

    T. H. Baker and P. J. Forrester, “Finite-\(N\) fluctuation formulas for random matrices,” J. Stat. Phys., 88, 1371–1386 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    A. Soshnikov, “Level spacings distribution for large random matrices: Gaussian fluctuations,” Ann. Math. Ser. 2, 148, 573–617 (1998).

    MathSciNet  Article  Google Scholar 

  18. 18

    C. P. Hughes, J. P. Keating, and N. O’Connell, “On the characteristic polynomial of a random unitary matrix,” Commun. Math. Phys., 220, 429–451 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    E. S. Meckes and M. W. Meckes, “Self-similarity in the circular unitary ensemble,” Discrete Anal., 2016, 9 (2016); arXiv:1507.05876v4 [math-ph] (2015).

    MathSciNet  MATH  Google Scholar 

  20. 20

    E. Paquette and O. Zeitouni, “The maximum of the CUE field,” Internat. Math. Res. Not., 2018, 5028–5119 (2018).

    MathSciNet  Article  Google Scholar 

  21. 21

    C. Webb, “Linear statistics of the circular \(\beta\)-ensemble, Stein’s method, and circular Dyson Brownian motion,” Electron. J. Probab., 21, 25 (2016).

    MathSciNet  Article  Google Scholar 

  22. 22

    N. S. Witte and P. J. Forrester, “Moments of the Gaussian \(\beta\) ensembles and the large-\(N\) expansion of the densities,” J. Math. Phys., 55, 083302 (2014); arXiv:1310.8498v2 [math.CA] (2013).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    T. Jiang and S. Matsumoto, “Moments of traces of circular beta-ensembles,” Ann. Probab., 43, 3279–3336 (2015).

    MathSciNet  Article  Google Scholar 

Download references


This research was supported in part by the Simons Foundation (Collaboration Grant for Mathematicians No. 312391).

Author information



Corresponding author

Correspondence to A. B. Soshnikov.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguirre, A., Soshnikov, A.B. A note on pair-dependent linear statistics with a slowly increasing variance. Theor Math Phys 205, 1682–1691 (2020). https://doi.org/10.1134/S0040577920120090

Download citation


  • random matrix
  • circular unitary ensemble
  • pair-counting statistics
  • central limit theorem