Mutual transition of Andreev and Majorana bound states in a superconducting gap


Using the Bogoliubov–de Gennes Hamiltonian, we analytically study two models with superconducting order, the p-wave model with an impurity potential and the s-wave nanowire model with superconductivity induced by the proximity effect with an impurity potential in a Zeeman field with a spin–orbit interaction. Using the Dyson equation, we study conditions for the emergence of Andreev bound states with energies close to the boundary of the superconducting gap and the possibility for these states to pass into Majorana-like bound states. We prove that in the topological phase (in the p-wave case also in the trivial phase) for both models, the Andreev bound states with energy close to the boundary of the superconducting gap can exist, but although their emergence in the p-wave model is due to the appearance of a (nonmagnetic) impurity, they appear in the s-wave model only as a result of a local perturbation of the Zeeman field. For both models, the transition of the Andreev bound states into the Majorana states (and back) is impossible in the topological phase, which is explained by the topological protection of the Majorana-like bound states in the topological phase.

This is a preview of subscription content, access via your institution.


  1. 1

    S. R. Elliot and M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Modern Phys., 87, 137–163 (2015); arXiv:1403.4976v2 [cond-mat.supr-con] (2014).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys., 75, 076501 (2012); arXiv:1202.1293v1 [cond-mat.supr-con] (2012).

    ADS  Article  Google Scholar 

  3. 3

    M. Sato and S. Fujimoto, “Majorana fermions and topology in superconductors,” J. Phys. Soc. Japan, 85, 072001 (2016); arXiv:1601.02726v2 [cond-mat.supr-con] (2016).

    ADS  Article  Google Scholar 

  4. 4

    R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg, “Majorana zero modes in superconductor–semiconductor heterostructures,” Nature Rev. Mater., 3, 52–68 (2018); arXiv:1707.04899v2 [cond-mat.supr-con] (2017).

    ADS  Article  Google Scholar 

  5. 5

    F. von Oppen, Y. Peng, and F. Pientka, “Topological superconducting phases in one dimension,” in: Topological Aspects of Condensed Matter Physics (Lect. Notes Les Houches Summer School, Vol. 103, C. Chamon, M. O. Goerbig, R. Moessner, and L. F. Cugliandolo, eds.), Oxford Univ. Press, Oxford (2017), pp. 387–449.

    Article  Google Scholar 

  6. 6

    K. Sengupta, I. Žutic, H.-J. Kwon, V. M. Yakovenko, and S. D. Sarma, “Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors,” Phys. Rev. B, 63, 144531 (2001); arXiv:cond-mat/0010206v3 (2000).

    ADS  Article  Google Scholar 

  7. 7

    V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, “Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices,” Science, 336, 1003–1007 (2012).

    ADS  Article  Google Scholar 

  8. 8

    A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, “Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions,” Nature Phys., 8, 887–895 (2012); arXiv:1205.7073v2 [cond-mat.mes-hall] (2012).

    ADS  Article  Google Scholar 

  9. 9

    M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, “Majorana bound state in a coupled quantum-dot hybrid-nanowire system,” Science, 354, 1557–1562 (2016); arXiv:1612.07989v2 [cond-mat.mes-hall] (2016).

    ADS  Article  Google Scholar 

  10. 10

    L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nature Phys., 8, 795–799 (2012); arXiv:1204.4212v2 [cond-mat.mes-hall] (2012).

    ADS  Article  Google Scholar 

  11. 11

    C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot–nanowire–superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks,” Phys. Rev. B, 96, 075161 (2017); arXiv:1705.02035v2 [cond-mat.mes-hall] (2017).

    ADS  Article  Google Scholar 

  12. 12

    C. Moore, C. Zeng, T. D. Stanescu, and S. Tewari, “Quantized zero-bias conductance plateau in semiconductor–superconductor heterostructures without topological Majorana zero modes,” Phys. Rev. B, 98, 155314 (2018); arXiv:1804.03164v1 [cond-mat.mes-hall] (2018).

    ADS  Article  Google Scholar 

  13. 13

    A. Vuik, B. Nijholt, A. R. Akhmerov, and M. Wimmer, “Reproducing topological properties with quasi-Majorana states,” SciPost Phys., 7, 061 (2019); arXiv:1806.02801v3 [cond-mat.mes-hall] (2018).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    C.-K. Chiu and S. D. Sarma, “Fractional Josephson effect with and without Majorana zero modes,” Phys. Rev. B, 99, 035312 (2019).

    ADS  Article  Google Scholar 

  15. 15

    T. S. Tinyukova and Yu. P. Chuburin, “The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator,” Theor. Math. Phys., 202, 72–88 (2020).

    Article  Google Scholar 

  16. 16

    Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap,” Phys. E, 89, 130–133 (2017).

    Article  Google Scholar 

  17. 17

    Yu. P. Chuburin, “Existence of Majorana bound states in a superconducting nanowire,” Theor. Math. Phys., 197, 1635–1644 (2018).

    MathSciNet  Article  Google Scholar 

  18. 18

    C. W. J. Beenakker, “Random-matrix theory of Majorana fermions and topological superconductors,” Rev. Modern Phys., 87, 1037–1066 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    R. Aguado, “Majorana quasiparticles in condensed matter,” Riv. Nuovo Cimento, 40, 523–593 (2017); arXiv:1711.00011v2 [cond-mat.supr-con] (2017).

    Google Scholar 

  20. 20

    T. S. Tinyukova, “Majorana states in a \(p\)-wave superconducting nanowire [in Russian],” Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28, 222–230 (2018).

    MathSciNet  Article  Google Scholar 

  21. 21

    Yu. P. Chuburin, “On small perturbations of the Schrödinger equation with periodic potential,” Theor. Math. Phys., 110, 351–359 (1997).

    Article  Google Scholar 

  22. 22

    Yu. P. Chuburin, “On levels of a weakly perturbed periodic Schrödinger operator,” Commun. Math. Phys., 249, 497–510 (2004).

    ADS  Article  Google Scholar 

  23. 23

    S. D. Sarma, A. Nag, and J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires,” Phys. Rev. B, 94, 035143 (2016).

    ADS  Article  Google Scholar 

  24. 24

    Yu. N. Demkov and V. N. Ostrovsky, Method of Zero-Range Potentials in Atomic Physics [in Russian], Lenigrad Univ. Press, Leningrad (1975); English transl.: Zero-Range Potentials and Their Application in Atomic Physics,, Plenum, New York (1988).

    Google Scholar 

  25. 25

    S. K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M. A. Solis, M. de Llano, A. A. Valladares, and O. Rojo, “Linear to quadratic crossover of Cooper-pair dispersion relation,” Phys. C, 351, 341–348 (2001); arXiv:cond-mat/0008478v1 (2000).

    ADS  Article  Google Scholar 

  26. 26

    M. Sato and Y. Ando, “Topological superconductors: A review,” Rep. Prog. Phys., 80, 076501 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    S. Datta, Quantum Transport: Atom to Transistor, Cambridge Univ. Press, Cambridge (2005).

    Book  Google Scholar 

  28. 28

    J. Viljas, “Molecular electronics, a brief introduction,” Molecular_electronics_a_brief_introduction (2011).

  29. 29

    Yu. P. Chuburin and T. S. Tinyukova, “The emergence of bound states in a superconducting gap at the topological insulator edge,” Phys. Lett. A, 384, 126694 (2020).

    MathSciNet  Article  Google Scholar 

Download references


The research of Yu. P. Chuburin was supported by the Urals Branch of the Russian Academy of Sciences (Program No. AAAA-A16-116021010082-8).

The research of T. S. Tinyukina was supported by the Ministry of Education and Science of the Russian Federation under state mission No. 075-00232-20-01, Project No. 0827-2020-0010 “Development of theory and methods of control and stabilization of dynamical systems.”

Author information



Corresponding author

Correspondence to Yu. P. Chiburin.

Ethics declarations

The authors declare no conflicts of interest.


We find the Green’s function of the Hamiltonian \( \mathcal{H} \), i.e., the kernel of the resolvent \(( \mathcal{H} -E)^{-1}\). Applying Fourier transform (3) to matrix (25), we obtain

$$\widetilde { \mathcal{H} }(p)-E=\begin{pmatrix}p^2+M-E&-i\alpha p& \phantom{-} 0&\Delta \\ i\alpha p&p^2-M-E&-\Delta&0 \\ 0&-\Delta&-p^2-M-E&-i\alpha p \\ \Delta& \phantom{-} 0&i\alpha p&-p^2+M-E\end{pmatrix}. $$

We first find the Green’s function in the momentum representation by solving the equation \(( \widetilde { \mathcal{H} }(p)-E) \widetilde \psi= \widetilde \varphi \) for \( \widetilde \psi\). The determinant of matrix (A.1) is equal to

$$\begin{aligned} \, d&=E^4-2(M^2+\Delta^2+\alpha^2 p^2)E^2+ (M^2-\Delta^2)^2+2\alpha^2 p^2(M^2-\Delta^2)= \nonumber \\ &=2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2), \end{aligned}$$
$$a^2=\frac{4\Delta^2 E^2-(M^2-\Delta^2-E^2)^2}{2\alpha^2 (M^2-\Delta^2-E^2)}. $$
In accordance with (A.2), \(d=0\) if
$$\begin{aligned} \, E^2&=M^2+\Delta^2+\alpha^2p^2\pm\sqrt{(M^2+\Delta^2+\alpha^2p^2)^2- (M^2-\Delta^2)^2-2\alpha^2p^2(M^2-\Delta^2)}\approx \nonumber \\ &\approx M^2+\Delta^2+\alpha^2p^2\pm 2\Delta\sqrt{M^2+\alpha^2p^2}= (\Delta\pm \sqrt{M^2+\alpha^2p^2})^2. \end{aligned}$$

We compute the determinants \(d_j\), \(j=1,\dots,4\), which are obtained from the determinant of (A.1) by replacing the \(j\)th column with \(( \widetilde \varphi _{ \mathrm{e} \uparrow }, \widetilde \varphi _{ \mathrm{e} \downarrow }, \widetilde \varphi _{ \mathrm{h} \uparrow }, \widetilde \varphi _{ \mathrm{h} \downarrow })^{ \mathrm{T} }\). We then have

$$\begin{aligned} \, d_1={}&[(-(M+E)^2+\Delta^2+\alpha^2(M+E))p^2+ (M-E)((M+E)^2-\Delta^2)] \widetilde \varphi _{ \mathrm{e} \uparrow }-{} \\ &{}-i\alpha p(M^2-\Delta^2-E^2) \widetilde \varphi _{ \mathrm{e} \downarrow }- 2iE\alpha\Delta p \widetilde \varphi _{ \mathrm{h} \uparrow }- \Delta[\alpha^2p^2+(M+E)^2-\Delta^2] \widetilde \varphi _{ \mathrm{h} \downarrow }, \\ d_2={}&i\alpha p(M^2-E^2-\Delta^2) \widetilde \varphi _{ \mathrm{e} \uparrow }+ [p^2(-(M-E)^2+\Delta^2-\alpha^2(M-E))+{} \\ &{}+(M-E)(E^2-M^2)+\Delta^2(M+E)] \widetilde \varphi _{ \mathrm{e} \downarrow }+ \Delta[(M-E)^2+\alpha^2p^2-\Delta^2] \widetilde \varphi _{ \mathrm{h} \uparrow }- 2Ei\alpha p\Delta \widetilde \varphi _{ \mathrm{e} \downarrow }, \\ d_3={}&2i\alpha p\Delta E \widetilde \varphi _{ \mathrm{e} \uparrow }+ \Delta[(M-E)^2+\alpha^2p^2-\Delta^2] \widetilde \varphi _{ \mathrm{e} \downarrow }+ [p^2((M-E)^2-\Delta^2+\alpha^2(E-M))+{} \\ &{}+\Delta^2(M+E)-(M+E)(M-E)^2] \widetilde \varphi _{ \mathrm{h} \uparrow }+ i\alpha p(\Delta^2+E^2-M^2) \widetilde \varphi _{ \mathrm{h} \downarrow }, \\ d_4={}&-\Delta(\alpha^2p^2+(M+E)^2-\Delta^2) \widetilde \varphi _{ \mathrm{e} \uparrow }+ 2i\alpha p\Delta E \widetilde \varphi _{ \mathrm{e} \downarrow }+ i\alpha p(M^2-E^2-\Delta^2) \widetilde \varphi _{ \mathrm{h} \uparrow }+{} \\ &{}+[((M+E)^2-\Delta^2+\alpha^2(M+E))p^2+ (M-E)((M+E)^2-\Delta^2)] \widetilde \varphi _{ \mathrm{h} \downarrow }. \end{aligned} $$
From (A.2) and (A.5), using the Cramer formulas, we obtain
$$\begin{aligned} \, \widetilde \psi_{ \mathrm{e} \uparrow }(p)={}&(( \widetilde { \mathcal{H} }(p)-E)^{-1} \widetilde \varphi )_{ \mathrm{e} \uparrow }(p)= \\ ={}&\biggl(\frac{-(M+E)^2+\Delta^2+\alpha^2(M+E)} {2\alpha^2(M^2-\Delta^2-E^2)}+{} \\ &{}+\frac{(-(M+E)^2+\Delta^2+\alpha^2(M+E))a^2+(M-E)((M+E)^2-\Delta^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggl) \widetilde \varphi _{ \mathrm{e} \uparrow }-{} \\ &{}-\frac{ip}{2\alpha(p^2-a^2)} \widetilde \varphi _{ \mathrm{e} \downarrow }- \frac{iE\Delta p}{\alpha(M^2-\Delta^2-E^2)(p^2-a^2)} \widetilde \varphi _{ \mathrm{h} \uparrow }-{} \\ &{}-\biggl(\frac{\Delta}{2(M^2-\Delta^2-E^2)}+ \frac{\Delta(\alpha^2a^2+(M+E)^2-\Delta^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggl) \widetilde \varphi _{ \mathrm{h} \downarrow }, \\ \widetilde \psi_{ \mathrm{e} \downarrow }(p)={}&(( \widetilde { \mathcal{H} }(p)-E)^{-1} \widetilde \varphi )_{ \mathrm{e} \downarrow }(p)= \\ &{}=\frac{ip}{2\alpha(p^2-a^2)}\, \widetilde \varphi _{ \mathrm{e} \uparrow }+\biggl( \frac{-(M-E)^2+\Delta^2-\alpha^2(M-E)}{2\alpha^2(M^2-\Delta^2-E^2)}+{} \\ &{}+\frac{(-(M-E)^2+\Delta^2-\alpha^2(M-E))a^2+(M+E)(\Delta^2-(M-E)^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggl) \widetilde \varphi _{ \mathrm{e} \downarrow }+{} \\ &{}+\biggl(\frac{\Delta}{2(M^2-\Delta^2-E^2)}+ \frac{\Delta(\alpha^2a^2+(M-E)^2-\Delta^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggr) \widetilde \varphi _{ \mathrm{h} \uparrow }-{} \\ &{}-\frac{Eip\Delta}{\alpha(M^2-\Delta^2-E^2)(p^2-a^2)} \widetilde \varphi _{ \mathrm{h} \downarrow }, \\ \widetilde \psi_{ \mathrm{h} \uparrow }(p)={}&(( \widetilde { \mathcal{H} }(p)-E)^{-1} \widetilde \varphi )_{ \mathrm{h} \uparrow }(p)= \\ ={}&\frac{ip\Delta E}{\alpha(M^2-\Delta^2-E^2)(p^2-a^2)} \widetilde \varphi _{ \mathrm{e} \uparrow }+{} \\ &{}+\biggl(\frac{\Delta}{2(M^2-\Delta^2-E^2)}+ \frac{\Delta(\alpha^2a^2+(M-E)^2-\Delta^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggr) \widetilde \varphi _{ \mathrm{e} \downarrow }+{} \\ &{}+\biggl(\frac{(M-E)^2-\Delta^2+\alpha^2(E-M)} {2\alpha^2(M^2-\Delta^2-E^2)}+{} \\ &{}+\frac{((M-E)^2-\Delta^2+\alpha^2(E-M))a^2+(M+E)(\Delta^2-(M-E)^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggl) \widetilde \varphi _{ \mathrm{h} \uparrow }-{} \\ &{}-\frac{ip}{2\alpha(p^2-a^2)} \widetilde \varphi _{ \mathrm{h} \downarrow }, \\ \widetilde \psi_{ \mathrm{h} \downarrow }(p)={}&(( \widetilde { \mathcal{H} }(p)-E)^{-1} \widetilde \varphi )_{ \mathrm{h} \downarrow }(p)= \\ &{}=-\biggl(\frac{\Delta}{2(M^2-\Delta^2-E^2)}+ \frac{\Delta(\alpha^2a^2+(M+E)^2-\Delta^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggr) \widetilde \varphi _{ \mathrm{e} \uparrow }+{} \\ &{}+\frac{i\Delta Ep}{\alpha(M^2-\Delta^2-E^2)(p^2-a^2)} \widetilde \varphi _{ \mathrm{e} \downarrow }+\frac{ip}{2\alpha (p^2-a^2)}\, \widetilde \varphi _{ \mathrm{h} \uparrow }+{} \\ &{}+\biggl(\frac{(M+E)^2-\Delta^2+\alpha^2(M+E)} {2\alpha^2(M^2-\Delta^2-E^2)}+{} \\ &{}+\frac{((M+E)^2-\Delta^2+\alpha^2(M+E))a^2+(M-E)((M+E)^2-\Delta^2)} {2\alpha^2(M^2-\Delta^2-E^2)(p^2-a^2)}\biggl) \widetilde \varphi _{ \mathrm{h} \downarrow }. \end{aligned} $$
We have the known formulas
$$\begin{aligned} \, &\frac{1}{\sqrt{2\pi}}\int_{ \mathbb{R} }\frac{e^{ipx} \widetilde \varphi (p)\,dp}{p^2-a^2}= -\frac{1}{2ia}\int_{ \mathbb{R} }e^{ia|x-x'|} \varphi (x')\,dx', \\ &\frac{1}{\sqrt{2\pi}}\int_{ \mathbb{R} }\frac{pe^{ipx} \widetilde { \varphi }(p)\,dp}{p^2-a^2}= -\frac{1}{2i}\int_{ \mathbb{R} }e^{ia|x-x'|} \operatorname{sgn} (x-x') \varphi (x')\,dx'. \end{aligned} $$
Passing to the coordinate representation in (A.6) using (A.7), we obtain the Green’s function \(\mathcal G(x-x',E)\) of the Hamiltonian \( \mathcal{H} \) (it was found for \(E=0\) in [17]):
$$\mathcal G(x-x',E)=\begin{pmatrix} g_{11}(x-x',E)&g_{12}(x-x',E)&g_{13}(x-x',E)&g_{14}(x-x',E) \\ g_{21}(x-x',E)&g_{22}(x-x',E)&g_{23}(x-x',E)&g_{24}(x-x',E) \\ g_{31}(x-x',E)&g_{32}(x-x',E)&g_{33}(x-x',E)&g_{34}(x-x',E) \\ g_{41}(x-x',E)&g_{42}(x-x',E)&g_{43}(x-x',E)&g_{44}(x-x',E)\end{pmatrix}, $$
$$\begin{aligned} \, g_{11}(x-x',E)={}&-g_{33}(x-x',-E)= \\ ={}&\frac{-(M+E)^2+\Delta^2+\alpha^2(M+E)} {2\alpha^2 (M^2-\Delta^2-E^2)}\,\delta(x-x')-{} \\ &{}-\frac{(-(M+E)^2+\Delta^2+\alpha^2(M+E))a^2+ (M-E)((M+E)^2-\Delta^2)}{4ia\alpha^2 (M^2-\Delta^2-E^2)}\,e^{ia|x-x'|}, \\ g_{12}(x-x',E)={}&-g_{21}(x-x',E)=g_{34}(x-x',E)=-g_{43}(x-x',E)= \\ ={}&\frac{1}{4\alpha}\,e^{ia|x-x'|} \operatorname{sgn} (x-x'), \\ g_{13}(x-x',E)={}&-g_{31}(x-x',E)=g_{24}(x-x',E)=-g_{42}(x-x',E)= \\ ={}&\frac{E\Delta}{2\alpha(M^2-\Delta^2-E^2)}e^{ia|x-x'|} \operatorname{sgn} (x-x'), \\ g_{14}(x-x',E)={}&g_{41}(x-x',E)=-g_{23}(x-x',-E)=-g_{32}(x-x',-E)= \\ ={}&-\frac{\Delta}{2(M^2-\Delta^2-E^2)}\,\delta(x-x')+ \frac{\Delta(\alpha^2 a^2+(M+E)^2-\Delta^2)} {4ia\alpha^2(M^2-\Delta^2-E^2)}e^{ia|x-x'|}, \\ g_{22}(x-x',E)={}&-g_{44}(x-x',-E)= \\ ={}&\frac{-(M-E)^2+\Delta^2-\alpha^2(M-E)} {2\alpha^2(M^2-\Delta^2-E^2)}\delta(x-x')+{} \\ &{}+\frac{((M-E)^2-\Delta^2+\alpha^2(M-E))a^2+ (M+E)((M-E)^2-\Delta^2)}{4ia\alpha^2(M^2-\Delta^2-E^2)}e^{ia|x-x'|}. \end{aligned} $$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiburin, Y.P., Tinyukova, T.S. Mutual transition of Andreev and Majorana bound states in a superconducting gap. Theor Math Phys 205, 1666–1681 (2020).

Download citation


  • Bogoliubov–de Gennes Hamiltonian
  • superconducting gap
  • Andreev bound state
  • Majorana bound state