Skip to main content
Log in

Multisolitons of the \(U(N)\) generalized Heisenberg magnet model and the Yang–Baxter relation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the binary Darboux transformation to obtain exact multisoliton solutions of the \(U(N)\) generalized Heisenberg magnet model and present the solutions in terms of quasideterminants. In addition, based on using the Poisson bracket algebra, we develop a new canonical approach of the type of the \(r\)-matrix approach for the generalized Heisenberg magnet model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method,” Phys. Lett. A, 64, 235–237 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. A. Takhtajan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (2007).

    Google Scholar 

  3. S. J. Orfanidis, “\(\mathrm{SU}(n)\) Heisenberg spin chain,” Phys. Lett. A, 75, 304–306 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Calini, “A note on a Bäcklund transformation for the continuous Heisenberg model,” Phys. Lett. A, 203, 333–344 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. J. Shin, “Generalized Heisenberg ferromagnetic models via Hermitian symmetric spaces,” J. Phys. A: Math. Gen., 34, 3169–3177 (2001).

    Article  ADS  Google Scholar 

  6. G. M. Pritula and V. E. Vekslerchik, “Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system,” J. Nonlinear Math. Phys., 10, 256–281 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. L. Ciéslínski and J. Czarnecka, “The Darboux–Bäcklund transformation for the static 2-dimensional continuum Heisenberg chain,” J. Phys. A: Math. Gen., 39, 11003–11012 (2006).

    Article  ADS  Google Scholar 

  8. O. Ragnisco and F. Zullo, “Continuous and discrete (classical) Heisenberg spin chain revisited,” SIGMA, 3, 033 (2007); arXiv:nlin/0701006v2 (2007).

    MATH  Google Scholar 

  9. U. Saleem and M. Hassan, “Quasideterminant solutions of the generalized Heisenberg magnet model,” J. Phys. A: Math. Theor., 43, 045204 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Dorey and B. Vicedo, “A symplectic structure for string theory on integrable backgrounds,” JHEP, 0703, 045 (2007); arXiv:hep-th/0606287v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Arutyunov and M. Zamaklar, “Linking Bäcklund and monodromy charges for strings on AdS\(_5\times S^5\),” JHEP, 0507, 026 (2005); arXiv:hep-th/0504144v1 (2005).

    Article  ADS  Google Scholar 

  12. F. L. Alday, G. Arutyunov, and A. A. Tseytlin, “On integrability of classical superstrings in AdS\(_5\times S^5\),” JHEP, 0507, 002 (2005); arXiv:hep-th/0502240v2 (2005).

    Article  ADS  Google Scholar 

  13. A. Das, J. Maharana, A. Melikyan, and M. Sato, “The algebra of transition matrices for the AdS\(_5\times S^5\) superstring,” JHEP, 0412, 055 (2004); arXiv:hep-th/0411200v2 (2004).

    Article  ADS  Google Scholar 

  14. G. Arutyunov and S. Frolov, “Integrable Hamiltonian for classical strings on AdS\(_5\times S^5\),” JHEP, 0502, 059 (2005).

    Article  ADS  Google Scholar 

  15. M. Hatsuda and K. Yoshida, “Classical integrability and super Yangian of superstring on AdS\(_5\times S^5\),” Adv. Theor. Math. Phys., 9, 703–728 (2005).

    Article  MathSciNet  Google Scholar 

  16. U. Saleem and M. Hassan, “Lax pair and Darboux transformation of noncommutative \(U(N)\) principal chiral model,” J. Phys. A: Math. Gen., 39, 11683–11698 (2006); arXiv:hep-th/0609127v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Hamanaka, “Notes on exact multi-soliton solutions of noncommutative integrable hierarchies,” JHEP, 0702, 094 (2007); arXiv:hep-th/0610006v3 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. R. Gilson, J. J. C. Nimmo, and Y. Ohta, “Quasideterminant solutions of a non-Abelian Hirota–Miwa equation,” J. Phys. A: Math. Theor., 40, 12607–12617 (2007); arXiv:nlin/0702020v1 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  19. C. R. Gilson and J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation,” J. Phys. A: Math. Theor., 40, 3839–3850 (2007); arXiv:0711.3733v2 [nlin.SI] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  20. U. Saleem, M. Hassan, and M. Siddiq, “Non-local continuity equations and binary Darboux transformation of noncommutative (anti) self-dual Yang–Mills equations,” J. Phys. A: Math. Theor., 40, 5205–5217 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  21. I. C. Cabrera-Carnero and M. Moriconi, “Noncommutative integrable field theories in 2d,” Nucl. Phys. B, 673, 437–454 (2003); arXiv:hep-th/0211193v2 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. U. Saleem, M. Siddiq, and M. Hassan, “On noncommutative sinh-Gordon equation,” Chin. Phys. Lett., 22, 1076–1078 (2005); arXiv:hep-th/0605093v2 (2006).

    Article  ADS  Google Scholar 

  23. B. Haider and M. Hassan, “The \(U(N)\) chiral model and exact multi-solitons,” J. Phys. A: Math. Theor., 41, 255202 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Minwalla, M. V. Raamsdonk, and N. Seiberg, “Noncommutative perturbative dynamics,” JHEP, 0002, 020 (2000); arXiv:hep-th/9912072v2 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP, 9909, 032 (1999); arXiv:hep-th/9908142v3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Furuta and T. Inami, “Ultraviolet property of noncommutative Wess–Zumino–Witten model,” Modern Phys. Lett. A, 15, 997–1002 (2000); arXiv:hep-th/0004024v1 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. G. Rajeev, G. Sparano, and P. Vitale, “Alternative canonical formalism for the Wess–Zumino–Witten model,” Internat. J. Modern Phys. A, 9, 5469–5487 (1994); arXiv:hep-th/9312178v1 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. G. Rajeev, A. Stern, and P. Vitale, “Integrability of the Wess–Zumino–Witten model as a non-ultralocal theory,” Phys. Lett. B, 388, 769–775 (1996); arXiv:hep-th/9602149v2 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Jimbo, ed., Yang–Baxter Equation in Integrable Systems (Adv. Series Math. Phys., Vol. 10), World Scientific, Singapore (1989).

    MATH  Google Scholar 

  30. J.-M. Maillet, “New integrable canonical structures in two-dimensional models,” Nucl. Phys. B, 269, 54–76 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  31. H. J. de Vega, H. Eichenherr, and J. M. Maillet, “Yang–Baxter algebras of monodromy matrices in integrable quantum field theories,” Nucl. Phys. B, 240, 377–399 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. J.-M. Maillet, “Kac–Moody algebra and extended Yang–Baxter relations in the \(O(N)\) nonlinear \(\sigma\)-model,” Phys. Lett. B, 162, 137–142 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  33. J.-M. Maillet, “Hamiltonian structures for integrable classical theories from graded Kac–Moody algebras,” Phys. Lett. B, 167, 401–405 (1986).

    Article  ADS  Google Scholar 

  34. I. Cherednik, Basic Methods of Soliton Theory (Adv. Series Math. Phys., Vol. 25), World Scientific, Singapore (1996).

    Book  Google Scholar 

  35. J. H. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin (1970).

    Google Scholar 

  36. T. Curtright and C. K. Zachos, “Supersymmetry and the nonlocal Yangian deformation symmetry,” Nucl. Phys. B, 402, 604–612 (1993); arXiv:hep-th/9210060v2 (1992).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Amjad.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjad, Z., Haider, B. Multisolitons of the \(U(N)\) generalized Heisenberg magnet model and the Yang–Baxter relation. Theor Math Phys 205, 1426–1438 (2020). https://doi.org/10.1134/S0040577920110033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920110033

Keywords

Navigation