Skip to main content
Log in

Convergent perturbation theory for studying phase transitions

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a method for constructing a perturbation theory with a finite radius of convergence for a rather wide class of quantum field models traditionally used to describe critical and near-critical behavior in problems in statistical physics. For the proposed convergent series, we use an instanton analysis to find the radius of convergence and also indicate a strategy for calculating their coefficients based on the diagrams in the standard (divergent) perturbation theory. We test the approach in the example of the standard stochastic dynamics \( \mathrm{A} \)-model and a matrix model of the phase transition in a system of nonrelativistic fermions, where its application allows explaining the previously observed quasiuniversal behavior of the trajectories of a first-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

REFERENCES

  1. D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, “Analytic continuation of the results of perturbation theory for the model \(g\varphi^4\) to the region \(g\gtrsim1\),” Theor. Math. Phys., 38, 9–16 (1979).

    Article  Google Scholar 

  2. M. V. Kompaniets and E. Panzer, “Minimally subtracted six-loop renormalization of \(O(n)\)-symmetric \(\phi^4\) theory and critical exponents,” Phys. Rev. D, 96, 036016 (2017); arXiv:1705.06483v2 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. I. Kazakov, O. V. Tarasov, and A. A. Vladimirov, “Calculation of critical exponents by quantum field theory methods,” Sov. Phys. JETP, 50, 521–526 (1979).

    Google Scholar 

  4. L. N. Lipatov, “Divergence of the perturbation-theory series and the quasi-classical theory,” Sov. Phys. JETP, 45, 216–223 (1977).

    ADS  MathSciNet  Google Scholar 

  5. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Intl. Series Monogr. Phys., Vol. 113), Oxford Univ. Press,Oxford (2002).

    Book  Google Scholar 

  6. A. G. Ushveridze, “Convergent perturbation expansion for field theories,” Soviet J. Nuclear Phys., 38, 475–480 (1984).

    MathSciNet  Google Scholar 

  7. J. Honkonen and M. Nalimov, “Convergent expansion for critical exponents in the \(O(n)\)-symmetric \(\phi^4\) model for large \(\epsilon\),” Phys. Lett. B, 459, 582–588 (1999).

    Article  ADS  Google Scholar 

  8. J. Honkonen, M. Komarova, and M. Nalimov, “Large order asymptotics and convergent perturbation theory for critical indexes of \(\phi^4\) model in \(4-\epsilon\) expansion,” Acta Phys. Slov., 52, 303–310 (2002); arXiv:hep-th/0207011v1 (2002).

    Google Scholar 

  9. V. K. Sazonov, “Convergent perturbation theory for lattice models with fermions,” Internat. J. Modern Phys. A, 31, 1650072 (2016).

    Article  ADS  Google Scholar 

  10. V. Sazonov and A. Ivanov, “Infinite lattice models by an expansion with a non-Gaussian initial approximation,” Phys. Lett. B, 796, 52–58 (2019); arXiv:1806.01884v2 [hep-lat] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. V. Komarova, M. Yu. Nalimov, and J. Honkonen, “Temperature Green’s functions in Fermi systems: The superconducting phase transition,” Theor. Math. Phys., 176, 906–912 (2013).

    Article  MathSciNet  Google Scholar 

  12. G. A. Kalagov, M. Yu. Nalimov, and M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations,” Theor. Math. Phys., 181, 1448–1458 (2014).

    Article  MathSciNet  Google Scholar 

  13. G. A. Kalagov, M. V. Kompaniets, and M. Yu. Nalimov, “Renormalization-group investigation of a superconducting \(U(r)\)-phase transition using five loops calculations,” Nucl. Phys. B, 905, 16–44 (2016); arXiv:1505.07360v1 [cond-mat.stat-mech] (2015).

    Article  ADS  Google Scholar 

  14. P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Modern Phys., 49, 435–479 (1977).

    Article  Google Scholar 

  15. Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, and J. Honkonen, “Critical dynamics of the phase transition to the superfluid state,” Theor. Math. Phys., 200, 1237–1251 (2019).

    Article  MathSciNet  Google Scholar 

  16. M. V. Komarova and M. Yu. Nalimov, “Asymptotic behavior of renormalization constants in higher orders of the perturbation expansion for the \((4{-}\epsilon)\)-dimensionally regularized \(O(n)\)-symmetric \(\phi^4\) theory,” Theor. Math. Phys., 126, 339–353 (2001).

    Article  Google Scholar 

  17. V. G. Makhankov, “On the existence of non-one-dimensional soliton-like solutions for some field theories,” Phys. Lett. A, 61, 431–432 (1977).

    Article  ADS  Google Scholar 

  18. N. V. Antonov and A. N. Vasil’ev, “The quantum-field renormalization group in the problem of a growing phase boundary,” JETP, 81, 485–489 (1995).

    ADS  Google Scholar 

  19. A. N. Vasil’ev and M. Yu. Nalimov, “Analog of dimensional regularization for calculation of the renormalization-group functions in the \(1/n\) expansion for arbitrary dimension of space,” Theor. Math. Phys., 55, 423–431 (1983).

    Article  Google Scholar 

  20. A. N. Vasilev, Quantum Field Renormgroup in Critical Behavior Theory and Stochastic Dynamics [in Russian], PIYaF Press, St. Petersburg (1998); English transl.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).

    Google Scholar 

  21. P. C. Martin, E. D. Siggia, and H. A. Rose, “Statistical dynamics of classical systems,” Phys. Rev. A, 8, 423–437 (1973).

    Article  ADS  Google Scholar 

  22. L. Ts. Adzhemyan, M. Dančo, M. Hnatič, E. V. Ivanova, and M. V. Kompaniets, “Multi-loop calculations of anomalous exponents in the models of critical dynamics,” EPJ Web Conf., 108, 02004 (2016).

    Article  Google Scholar 

Download references

Funding

This research was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASISтАЭ (Grant No. 19-1-1-35-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ovsyannikov.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalimov, M.Y., Ovsyannikov, A.V. Convergent perturbation theory for studying phase transitions. Theor Math Phys 204, 1033–1045 (2020). https://doi.org/10.1134/S004057792008005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792008005X

Keywords

Navigation