Skip to main content
Log in

Effective classical harmonic crystal with thermal rectification

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of a thermal rectification mechanism in a harmonic model with a temperature-dependent effective potential. In contrast to much earlier work where it was shown for this model that rectification occurs in short chains of up to six sites, we analytically prove that this phenomenon occurs in a material with graded mass distribution for any size of the chain and is independent of the regime of heat transport. We find that thermal rectification is observed in a system with other asymmetric parameters, which can be related to structure parameters of the system or to features that depend on the temperatures of the internal sites of the chain and change when the heat baths at ends of the chain exchange places. The description of thermal rectification in these simplified models with a minimal set of ingredients shows that the phenomenon is ubiquitous and can help to theoretically investigate and practically create an efficient thermal diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. E. Peierls, Quantum Theory of Solids, Clarendon, Oxford (1955).

    MATH  Google Scholar 

  2. M. Bosterli, M. Rich, and W. M. Visscher, “Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs,” Phys. Rev. A, 1, 1086–1088 (1970).

    Article  ADS  Google Scholar 

  3. F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, “Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs,” J. Stat. Phys., 116, 783–813 (2004); arXiv:math-ph/0307035v1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Pereira and R. Falcao, “Nonequilibrium statistical mechanics of anharmonic crystals with self-consistent stochastic reservoirs,” Phys. Rev. E, 70, 046105 (2004); arXiv:cond-mat/0406474v1 (2004).

    Article  ADS  Google Scholar 

  5. R. Falcao, A. Francisco Neto, and E. Pereira, “Analytic approach to the (an)harmonic crystal chains with self-consistent stochastic reservoirs,” Theor. Math. Phys., 156, 1081–1088 (2008).

    Article  MathSciNet  Google Scholar 

  6. Z. Rieder, J. L. Lebowitz, and E. Lieb, “Properties of a harmonic crystal in a stationary nonequilibrium state,” J. Math. Phys., 8, 1073–1078 (1967).

    Article  ADS  Google Scholar 

  7. E. Pereira, H. C. F. Lemos, and R. Ávila, “Ingredients of thermal rectification: The case of classical and quantum self-consistent harmonic chains of oscillators,” Phys. Rev. E, 84, 061135 (2011).

    Article  ADS  Google Scholar 

  8. F. Bonetto, J. L. Lebowitz, J. Lukkarinen, and S. Olla, “Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs,” J. Stat. Phys., 134, 1097–1119 (2009); arXiv:0809.0953v2 [cond-mat.stat-mech] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Pereira, “Requisite ingredients for thermal rectification,” Phys. Rev. E, 96, 012114 (2017).

    Article  ADS  Google Scholar 

  10. A. Casher and J. L. Lebowitz, “Heat flow in regular and disordered harmonic chains,” J. Math. Phys., 12, 1701–1711 (1971).

    Article  ADS  Google Scholar 

  11. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin (2003).

    Book  Google Scholar 

  12. E. Pereira, L. M. Santana, and R. Ávila, “Heat-flow properties of systems with alternate masses or alternate on-site potentials,” Phys. Rev. E, 84, 011116 (2011).

    Article  ADS  Google Scholar 

  13. B. Simon, “Notes on infinite determinants of Hilbert space operators,” Adv. Math., 24, 244–273 (1977).

    Article  MathSciNet  Google Scholar 

  14. B. Hu, L. Yang, and Y. Zhang, “Asymmetric heat conduction in nonlinear lattices,” Phys. Rev. Lett., 97, 124302 (2006); arXiv:cond-mat/0511229v1 (2005).

    Article  ADS  Google Scholar 

  15. K. V. Reich, “Temperature gradient and Fourier’s law in gradient-mass harmonic systems,” Phys. Rev. E, 87, 052109 (2013); arXiv:1302.0478v2 [cond-mat.stat-mech] (2013).

    Article  ADS  Google Scholar 

  16. E. Pereira, “Graded anharmonic crystals as genuine thermal diodes: Analytical description of rectification and negative differential thermal resistance,” Phys. Rev. E, 82, 040101 (2010); arXiv:1101.4589v1 [cond-mat.mtrl-sci] (2011).

    Article  ADS  Google Scholar 

  17. J. Wang, E. Pereira, and G. Casati, “Thermal rectification in graded materials,” Phys. Rev. E, 86, 010101 (2012); arXiv:1207.1169v1 [cond-mat.stat-mech] (2012).

    Article  ADS  Google Scholar 

  18. E. Pereira, “Sufficient conditions for thermal rectification in general graded materials,” Phys. Rev. E, 83, 031106 (2011); arXiv:1101.4590v1 [cond-mat.mtrl-sci] (2011); R. R. Ávila and E. Pereira, “Thermal rectification features: A study starting from local assumptions,” J. Phys. A: Math. Theor., 46, 055002 (2013).

    Article  ADS  Google Scholar 

  19. E. Pereira, “Graded anharmonic crystals as genuine thermal diodes: Analytical description of rectification and negative differential thermal resistance,” Phys. Rev. E, 82, 040101 (2010); arXiv:1101.4589v1 [cond-mat.mtrl-sci] (2011).

    Article  ADS  Google Scholar 

  20. E. Pereira and R. R. Ávila, “Increasing thermal rectification: Effects of long-range interactions,” Phys. Rev. E, 88, 032139 (2013); arXiv:1309.4723v1 [cond-mat.stat-mech] (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks E. Pereira for the helpful discussions and for suggesting the problem.

Funding

This research was supported by the Minas Gerais Research Foundation (FAPEMIG), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. S. Silva.

Ethics declarations

The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.H.S. Effective classical harmonic crystal with thermal rectification. Theor Math Phys 204, 918–926 (2020). https://doi.org/10.1134/S0040577920070065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920070065

Keywords

Navigation