Skip to main content
Log in

Coupling of a biquaternionic Dirac field to a bosonic field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We extend the biquaternionic Dirac equation to include interactions with a background bosonic Geld. The obtained biquaternionic Dirac equation yields Maxwell-like equations that hold for both a matter Geld and an electromagnetic Geld. We establish that the electric Geld is perpendicular to the matter magnetic Geld and the magnetic Geld is perpendicular to the matter inertial Geld. We show that the inertial and magnetic masses are conserved separately. The magnetic mass density arises as a result of the coupling between the vector potential and the matter inertial Geld. The presence of the vector and scalar potentials and also the matter inertial and magnetic Gelds modify the Standard form of the derived Maxwell equations. The resulting interacting electrodynamics equations are generalizations of the equations of Wilczek or Chern-Simons axion-like Gelds. The coupled Geld in the biquaternioic Dirac Geld reconstructs the Wilczek axion Geld. We show that the electromagnetic Geld vector \(\overrightarrow{F}=\overrightarrow{E}+ic\overrightarrow{B}\), where \(\overrightarrow{E}\) and \(\overrightarrow{B}\) are the respective electric and magnetic Gelds, satisGes the massive Dirac equation and, moreover, \(\overrightarrow{\triangledown}\cdot\overrightarrow{F}=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. GriffithsIntroduction to Electrodynamics, Prentice-Hall, Upper Saddle River, N. J. (1999).

    Google Scholar 

  2. W. R. HamiltonLectures on Quaternions, Macmillan, Cambridge (1853).

    Google Scholar 

  3. A. I. Arbab “Maxwellian quantum mechanics,” Optik, 136, 382–389 (2017).

    Article  ADS  Google Scholar 

  4. F. Wilczek, “Two applications of axion electrodynamics,” Phys. Rev. Lett., 58, 1799–1803 (1987); “Problem of strongP and T invariance in the presence of instantons,” Phys. Rev. Lett., 40, 279–283 (1978).

    Article  ADS  Google Scholar 

  5. S.-S. Chern and J. Simons, “Characteristic forms and geometrie invariant,” Ann.Math., 99, 48–69 (1974).

    Google Scholar 

  6. S. Weinberg, “A new light boson?” Phys. Rev. Lett., 40, 223–226 (1978).

    Article  ADS  Google Scholar 

  7. J. D. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York (1964).

    MATH  Google Scholar 

  8. A. I. Arbab “Derivation of Dirac, Klein-Gordon, Schrödinger, diffusion, and quantum heat transport equations from a universal quantum wave equation,” Europhys. Lett., 92, 40001 (2010); arXiv:1007.1821vl [physics.gen-ph] (2010).

    Article  ADS  Google Scholar 

  9. S. L. Adler Quaternionic Quantum Mechanics and Quantum Fields (Intl. Ser. Monogr. Phys., Vol. 88), Oxford Univ. Press, New York (1992).

  10. D. Finkelstein, J. M. Jauch, S. Schiminovich, and D. Speiser, “Foundations of quaternion quantum mechanics,” J.Math. Phys., 3, 207–220 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  11. L. P. Horwitz “Schwinger algebra for quaternionic quantum mechanics,” Found. Phys., 27, 1011–1034 (1997); arXiv:hep-th/9702080vl (1997).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. A. M. Dirac “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. London Ser. A, 133, 60–72 (1931).

    Article  ADS  Google Scholar 

  13. S. C. Tiwari “On local duality invariance in electromagnetism,” arXiv:1110.5511v2 [physics.gen-ph] (2011).

  14. R. D. Peccei and H. R. Quinn “CP conservation in the presence of pseudoparticles,” Phys. Rev. Lett., 38, 1440–1443 (1977).

    Article  ADS  Google Scholar 

  15. L. Visinelli, “Axion-electromagnetic waves,” Modern. Phys. Lett. A, 28, 1350162 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, “Dynamical axion field in topological magnetic insulators,” Nature Phys., 6, 284–288 (2010).

    Article  ADS  Google Scholar 

  17. J. Schwinger, “On gauge invariance and vacuüm polarization,” Phys. Rev., 82, 664–679 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. I. Arbab “The extended gauge transformations,” Progr. Electromag. Res. M, 39, 107–114 (2014).

    Article  Google Scholar 

  19. S. M. Carroll G. B. Field and R. Jackiw, “Limits on a Lorentz- and parity-violating modification of electrody-namics,” Phys. Rev. D, 41, 1231–1240 (1990).

    Article  ADS  Google Scholar 

  20. A. J. Annunziata D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks A. Frydman, and D. E. Prober “Tun-able superconducting nanoinductors,” Nanotechnology, 21, 445202 (2010); arXiv:1007.4187v2 [cond-mat.supr-con] (2010).

    Article  Google Scholar 

  21. K. Fukushima, D. E. Kharzeev and H. J. Warringa “The chiral magnetic effect,” Phys. Rev. D, 78, 074033 (2008); arXiv:0808.3382vl [hep-ph] (2008).

    Article  ADS  Google Scholar 

  22. R. H. Good Jr., “Particle aspect of the electromagnetic field equations,” Phys. Rev., 105, 1914–1919 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Silberstein, “Elektromagnetische Grundgleichungen in bivektorieller Behandlung,” Ann. Phys. (Leipzig), 327, 579–586 (1907).

    Article  Google Scholar 

  24. A. Messiah, Quantum Mechanics, Elsevier, Amsterdam (1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Arbab.

Ethics declarations

Conflicts of interest. The author declares no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 2, pp. 231–250, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbab, A.I. Coupling of a biquaternionic Dirac field to a bosonic field. Theor Math Phys 203, 631–647 (2020). https://doi.org/10.1134/S0040577920050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920050062

Keywords

Navigation