Skip to main content
Log in

A classification algorithm for integrable two-dimensional lattices via Lie—Rinehart algebras

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the problem of the integrable classification of nonlinear lattices depending on one discrete and two continuous variables. By integrability, we mean the presence of reductions of a chain to a system of hyperbolic equations of an arbitrarily high order that are integrable in the Darboux sense. Darboux integrability admits a remarkable algebraic interpretation: the Lie—Rinehart algebras related to both characteristic directions corresponding to the reduced system of hyperbolic equations must have a finite dimension. We discuss a classification algorithm based on the properties of the characteristic algebra and present some classification results. We find new examples of integrable equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Adler, A. B. Shabat, and R. I. Yamilov, “Symmetry approach to the integrability problem,” Theor. Math. Phys.125, 1603–1661 (2000).

    Article  MathSciNet  Google Scholar 

  2. A. V. Mikhailov and R. I. Yamilov, “Towards classification of (2+1)-dimensional integrable equations: Integrability conditions I,” J. Phys. A: Math. Gen.31, 6707–6715 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. L. V. Bogdanov and B. G. Konopelchenko, “Grassmannians Gr(N1, N + 1), closed differential N − 1 forms, and N-dimensional integrable systems,” J. Phys. A: Math. Theor.46, 085201 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. V. Pavlov and Z. Popowicz, “On integrability of a special class of two-component (2+1)-dimensional hydrodynamic-type systems,” SIGMA5, 011 (2009).

    MathSciNet  MATH  Google Scholar 

  5. A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations,” Theor. Math. Phys.154, 405–417 (2008).

    Article  MathSciNet  Google Scholar 

  6. M. Mañas, L. M. Alonso, and C. Álvarez-Fernández, “The multicomponent 2D Toda hierarchy: Discrete flows and string equations,” Inverse Probl.25, 065007 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. E. Zakharov and S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions,” Funct. Anal. Appl.19, 89–101 (1985).

    Article  Google Scholar 

  8. I. S. Krasil’shchik, A. Sergyeyev, and O. I. Morozov, “Infinitely many nonlocal conservation laws for the ABC equation with A + B + C = 0,” Calc. Var. Partial Differ. Equ.55, 123 (2016).

    Article  MathSciNet  Google Scholar 

  9. E. V. Ferapontov, “Laplace transformations of hydrodynamic-type systems in Riemann invariants,” Theor. Math. Phys.110, 68–77 (1997).

    Article  Google Scholar 

  10. E. V. Ferapontov and K. R. Khusnutdinova, “On the integrability of (2+1)-dimensional quasilinear systems,” Commun. Math. Phys.248, 187–206 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. V. Ferapontov, K. R. Khusnutdinova, and M. V. Pavlov, “Classification of integrable (2+1)-dimensional quasilinear hierarchies,” Theor. Math. Phys.144, 907–915 (2005).

    Article  MathSciNet  Google Scholar 

  12. E. V. Ferapontov, K. R. Khusnutdinova, and S. P. Tsarev, “On a class of three-dimensional integrable Lagrangians,” Commun. Math. Phys.261, 225–243 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. B. Shabat and R. I. Yamilov, “Exponential systems of type I and the Cartan matrices [in Russian],” Preprint, Bashkirian Branch Acad. Sci. USSR, Ufa (1981).

  14. A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, and A. B. Shabat, Characteristic Lie Rings and Non-linear Integrable Equations [in Russian], Inst. Computer Studies, Moscow (2012).

    Google Scholar 

  15. A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, and A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics [in Russian],” Ufimsk. Matem. Zhurn.4, 17–85 (2012).

    MATH  Google Scholar 

  16. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices,” Theor. Math. Phys.182, 189–210 (2015).

    Article  MathSciNet  Google Scholar 

  17. S. V. Smirnov, “Semidiscrete Toda lattices,” Theor. Math. Phys.172, 1217–1231 (2012).

    Article  MathSciNet  Google Scholar 

  18. I. T. Habibullin and A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models,” Theor. Math. Phys.151, 781–790 (2007).

    Article  Google Scholar 

  19. K. Zheltukhin, N. Zheltukhina, and E. Bilen, “On a class of Darboux-integrable semidiscrete equations,” Adv. Differ. Equ.2017, 182 (2017).

    Article  MathSciNet  Google Scholar 

  20. K. Zheltukhin and N. Zheltukhina, “Semi-discrete hyperbolic equations admitting five dimensional characteristic x-ring,” J. Nonlinear Math. Phys.23, 351–367 (2016).

    Article  MathSciNet  Google Scholar 

  21. G. Gubbiotti, C. Scimiterna, and R. I. Yamilov, “Darboux integrability of trapezoidal H4 and H6 families of lattice equations II: General solutions,” SIGMA14, 008 (2018); arXiv:1704.05805v2 [nlin.SI] (2017).

    MATH  Google Scholar 

  22. I. T. Habibullin, “Characteristic Lie rings, finitely-generated modules, and integrability conditions for (2+1)-dimensional lattices,” Phys. Scr.87, 065005 (2013); arXiv:1208.5302v2 [nlin.SI] (2012).

    Article  ADS  Google Scholar 

  23. I. T. Habibullin and M. N. Poptsova, “Classification of a subclass of two-dimensional lattices via characteristic Lie rings,” SIGMA13, 073 (2017).

    MathSciNet  MATH  Google Scholar 

  24. M. N. Poptsova and I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional chain related to integrability,” Ufa Math. J.10, 86–105.

  25. M. N. Poptsova, “Symmetries of a certain periodic chain [in Russian],” Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.162, 80–84 (2019).

    MathSciNet  Google Scholar 

  26. M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras,” Ufa Math. J.11, No. 3, 109–131 (2019).

    Article  MathSciNet  Google Scholar 

  27. A. B. Shabat and R. I. Yamilov, “To a transformation theory of two-dimensional integrable systems,” Phys. Lett. A227, 15–23 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Rinehart, “Differential forms for general commutative algebras,” Trans. Amer. Math. Soc.108, 195–222 (1963).

    Article  MathSciNet  Google Scholar 

  29. D. Millionshchikov, “Lie algebras of slow growth and Klein-Gordon PDE,” Algebr. Represent. Theory21, 1037–1069 (2018).

    Article  MathSciNet  Google Scholar 

  30. A. V. Zhiber and O. S. Kostrigina, “Exactly integrable models of wave processes,” Vestn. UGATU9, No. 7(25), 83–89 (2007).

    Google Scholar 

  31. A. B. Shabat, “Higher symmetries of two-dimensional lattices,” Phys. Lett. A200, 121–133 (1995).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. T. Habibullin or M. N. Kuznetsova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 1, pp. 161–173, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibullin, I.T., Kuznetsova, M.N. A classification algorithm for integrable two-dimensional lattices via Lie—Rinehart algebras. Theor Math Phys 203, 569–581 (2020). https://doi.org/10.1134/S0040577920040121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920040121

Keywords

Navigation