Skip to main content
Log in

Revealing Nonperturbative Effects in the SYK Model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the large-N limit, we study saddle points of two SYK chains coupled by an interaction that is nonlocal in Euclidean time. We study the free model with the order of the fermionic interaction q = 2 analytically and also investigate the model with interaction in the case q = 4 numerically. We show that in both cases, there is a nontrivial phase structure with an infinite number of phases. Each phase corresponds to a saddle point in the noninteracting two-replica SYK. The nontrivial saddle points have a nonzero value of the replica-nondiagonal correlator in the sense of quasiaveraging if the coupling between replicas is turned off. The nonlocal interaction between replicas thus provides a protocol for turning the nonperturbatively subleading effects in SYK into nonequilibrium configurations that dominate at large N. For comparison, we also study two SYK chains with local interaction for q = 2 and q = 4. We show that the q=2 model has a similar phase structure, while the phase structure differs in the q = 4 model, dual to the traversable wormhole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev and J. Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet,” Phys. Rev. Lett., 70, 3339–3342 (1993); arXiv:cond-mat/9212030v1 (1992).

    Article  ADS  Google Scholar 

  2. A. Kitaev, “A simple model of quantum holography (part 1),” Talk at KITP Program: Entanglement in Strongly-Correlated Quantum Matter, online video http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).

  3. J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys. Rev. D, 94, 106002 (2016); arXiv:1604.07818v1 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Kitaev and S. Suh, “The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,” JHEP, 1805, 183 (2018); arXiv:1711.08467v5 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Sachdev, “Bekenstein-Hawking entropy and strange metals,” Phys. Rev. X, 5, 041025 (2015); arXiv: 1506.05111v4 [hep-th] (2015).

    Google Scholar 

  6. A. Jevicki, K. Suzuki, and J. Yoon, “Bi-local holography in the SYK model,” JHEP, 1607, 007 (2016); arXiv:1603.06246v7 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Jackiw, “Lower dimensional gravity,” Nucl. Phys. B, 252, 343–356 (1985).

    Article  ADS  Google Scholar 

  8. C. Teitelboim, “Gravitation and Hamiltonian structure in two space-time dimensions,” Phys. Lett. B, 126, 41–45 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Almheiri and J. Polchinski, “Models of AdS2 backreaction and holography,” JHEP, 1511, 014 (2015); arXiv:1402.6334v3 [hep-th] (2014).

    Article  ADS  Google Scholar 

  10. J. Engelsoy, T. G. Mertens, and H. Verlinde, “An investigation of AdS2 backreaction and holography,” JHEP, 1607, 139 (2016); arXiv:1606.03438v3 [hep-th] (2016).

    Article  ADS  Google Scholar 

  11. J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space,” Progr. Theor. Exp. Phys., 2016, 12C104 (2016); arXiv:1606.01857v2 [hep-th] (2016).

    Article  Google Scholar 

  12. K. Jensen, “Chaos in AdS2 holography,” Phys.Rev.Lett., 117, 111601 (2016); arXiv:1605.06098v3 [hep-th] (2016).

    Article  ADS  Google Scholar 

  13. J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, “Black holes and random matrices,” JHEP, 1705, 118 (2017); arXiv:1611.04650v3 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Saad, S. H. Shenker, and D. Stanford, “A semiclassical ramp in SYK and in gravity,” arXiv:1806.06840v2 [hep-th] (2018).

  15. P. Saad, S. H. Shenker, and D. Stanford, “JT gravity as a matrix integral,” arXiv:1903.11115v1 [hep-th] (2019).

  16. A. Blommaert, T. G. Mertens, and H. Verschelde, “Fine structure of Jackiw-Teitelboim quantum gravity,” arXiv:1812.00918v3 [hep-th] (2018).

  17. A. Blommaert, T. G. Mertens, and H. Verschelde, “Clocks and rods in Jackiw-Teitelboim quantum gravity,” arXiv:1902.11194v4 [hep-th] (2019).

  18. J. Maldacena and X. L. Qi, “Eternal traversable wormhole,” arXiv:1804.00491v3 [hep-th] (2018).

  19. A. M. Garcia-Garcia and J. J. M. Verbaarschot, “Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model,” Phys. Rev. D, 94, 126010 (2016); arXiv:1610.03816v2 [hep-th] (2016).

    Article  ADS  Google Scholar 

  20. A. M. Garcia-Garcia, T. Nosaka, D. Rosa, and J. J. M. Verbaarschot, “Quantum chaos transition in a two-site SYK model dual to an eternal traversable wormhole,” Phys. Rev. D, 100, 026002 (2019); arXiv:1901.06031v2 [hep-th] (2019).

    Article  ADS  Google Scholar 

  21. G. Gur-Ari, R. Mahajan, and A. Vaezi, “Does the SYK model have a spin glass phase?” JHEP, 1811, 070 (2018); arXiv:1806.10145v1 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. H. C. Lau, C. T. Ma, J. Murugan, and M. Tezuka, “Randomness and chaos,” Phys. Lett. B, 795, 230–235 (2019); arXiv:1812.04770v3 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, “Chaos, complexity, and random matrices,” JHEP, 1711, 048 (2017); arXiv:1706.05400v2 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka, “Onset of random matrix behavior in scrambling systems,” JHEP, 1807, 124 (2018); arXiv:1803.08050v4 [hep-th] (2018); Erratum, JHEP, 02, 197 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Okuyama, “Eigenvalue instantons in the spectral form factor of random matrix model,” JHEP, 1903, 147 (2019); arXiv:1812.09469v2 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Okuyama, “Replica symmetry breaking in random matrix model: A toy model of wormhole networks,” arXiv:1903.11776v3 [hep-th] (2019).

  27. A. M. Garcia-Garcia, B. Loureiro, A. Romero-Bermúdez, and M. Tezuka, “Chaotic-integrable transition in the Sachdev-Ye-Kitaev model,” Phys. Rev. Lett., 120, 241603 (2018); arXiv:1707.02197v4 [hep-th] (2017).

    Article  ADS  Google Scholar 

  28. V. Balasubramanian, B. Craps, B. Czech, and G. Sárosi, “Echoes of chaos from string theory black holes,” JHEP, 1703, 154 (2017); arXiv:1612.04334v3 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Georges, O. Parcollet, and S. Sachdev, “Quantum fluctuations of a nearly critical Heisenberg spin glass,” Phys. Rev. B, 63, 134406 (2001); arXiv:cond-mat/0009388v1 (2000).

    Article  ADS  Google Scholar 

  30. I. Ya. Aref’eva and I. V. Volovich, “Notes on the SYK model in real time,” Theor. Math. Phys., 197, 1650–1662 (2018); arXiv:1801.08118v1 [hep-th] (2018).

    Article  Google Scholar 

  31. I. Aref’eva and I. Volovich, “Spontaneous symmetry breaking in fermionic random matrix model,” JHEP, 1910, 114 (2019); arXiv: 1902.09970v1 [hep-th] (2019).

    Article  ADS  Google Scholar 

  32. W. Fu and S. Sachdev, “Numerical study of fermion and boson models with infinite-range random interactions,” Phys. Rev. B, 94, 035135 (2016); arXiv:1603.05246v2 [cond-mat.str-el] (2016).

    Article  ADS  Google Scholar 

  33. I. Aref’eva, M. Khramtsov, M. Tikhanovskaya, and I. Volovich, “Replica-nondiagonal solutions in the SYK model,” JHEP, 1907, 113 (2019); arXiv:1811.04831v4 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Wang, D. Bagrets, A. L. Chudnovskiy, and A. Kamenev, “On the replica structure of Sachdev-Ye-Kitaev model,” arXiv:1812.02666v1 [hep-th] (2018).

  35. D. Harlow and D. Jafferis, “The factorization problem in Jackiw-Teitelboim gravity,” arXiv:1804.01081v1 [hep-th] (2018).

  36. J. Maldacena, D. Stanford, and Z. Yang, “Diving into traversable wormholes,” Fortsch. Phys., 65, 201700034 (2017); arXiv:1704.05333v1 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  37. D. J. Gross and V. Rosenhaus, “A line of CFTs: From generalized free fields to SYK,” JHEP, 1707, 086 (2017); arXiv:1706.07015v2 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Kim, I. R. Klebanov, G. Tarnopolsky, and W. Zhao, “Symmetry breaking in coupled SYK or tensor models,” Phys. Rev. X, 9, 021043 (2019); arXiv:1902.02287v3 [hep-th] (2019).

    Google Scholar 

  39. P. Gao, D. L. Jafferis, and A. Wall, “Traversable wormholes via a double trace deformation,” JHEP, 1712, 151 (2017); arXiv:1608.05687v3 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  40. N. N. Bogoliubov, Collection of Scientific Works in 12 Volumes [in Russian], Vol. 6, Statistical Mechanics: Equilibrium Statistical Mechanics. 1945–1986, Nauka, Moscow (2007).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Maria Tikhanovskaya and Valentin Zagrebnov for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Ya. Aref’eva, I. V. Volovich or M. A. Khramtsov.

Ethics declarations

Conflicts of interest. The authors declare no conflicts of interest.

Additional information

The research of M. A. Khramtsov is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Project No. 17-15-566-1).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 201, No. 2, pp. 198–221, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y., Volovich, I.V. & Khramtsov, M.A. Revealing Nonperturbative Effects in the SYK Model. Theor Math Phys 201, 1585–1605 (2019). https://doi.org/10.1134/S0040577919110059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919110059

Keywords

Navigation