Skip to main content
Log in

Relativistic Interacting Integrable Elliptic Tops

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a relativistic generalization of integrable systems describing M interacting elliptic gl(N) Euler-Arnold tops. The obtained models are elliptic integrable systems that reproduce the spin elliptic GL(M) Ruijsenaars-Schneider model with N = 1 and relativistic integrable GL(N) elliptic tops with M = 1. We construct the Lax pairs with a spectral parameter on the elliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Krichever and A. V. Zabrodin, “Spin generalization of the Ruijsenaars-Schneider model, the non-Abelian Toda chain, and representations of the Sklyanin algebra,” Russian Math. Surveys, 50, 1101–1150 (1995); arXiv:hep-th/9505039v1 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero-Moser systems and elliptic function identities,” Commun. Math. Phys., 110, 191–213 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Billey, J. Avan, and O. Babelon, “The r-matrix structure of the Euler-Calogero-Moser model,” Phys. Lett. A, 186, 114–118 (1994); arXiv:hep-th/9312042v1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. “Exact Yangian symmetry in the classical Euler-Calogero-Moser model,” Phys. Lett. A, 188, 263–271 (1994); arXiv:hep-th/9401117v1 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Krichever, O. Babelon, E. Billey, and M. Talon, “Spin generalization of the Calogero-Moser system and the matrix KP equation,” in: Topics in Topology and Mathematical Physics (Amer. Math. Soc. Transl. Ser. 2, Vol. 170, S. P. Novikov, ed.), Amer. Math. Soc., Providence, R. I. (1995), pp. 83–120; arXiv:hep-th/9411160v1 (1994).

    MATH  Google Scholar 

  6. A. Levin, M. Olshanetsky, and A. Zotov, “Hitchin systems — symplectic Hecke correspondence and two-dimensional version,” Commun. Math. Phys., 236, 93–133 (2003); arXiv:nlin/0110045v3 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. P. Polychronakos, “Calogero-Moser models with noncommutative spin interactions,” Phys. Rev. Lett., 89, 126403 (2002); arXiv:hep-th/0112141v3 (2001)

    Article  ADS  Google Scholar 

  8. “Generalized Calogero models through reductions by discrete symmetries,” Nucl. Phys. B, 543, 485–498 (1999); arXiv:hep-th/9810211v1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. “The physics and mathematics of Calogero particles,” J. Phys. A: Math. Gen., 39, 12793–12845 (2006); arXiv:hep-th/0607033v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. V. Zotov and A. M. Levin, “Integrable model of interacting elliptic tops,” Theor. Math. Phys., 146, 45–52 (2006)

    Article  Google Scholar 

  11. A. V. Zotov and A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems,” Theor. Math. Phys., 177, 1281–1338 (2013)

    Article  MathSciNet  Google Scholar 

  12. A. Grekov and A. Zotov, “On R-matrix valued Lax pairs for Calogero-Moser models,” J. Phys. A: Math. Theor., 51, 315202 (2018); arXiv:1801.00245v2 [math-ph] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Levin, M. Olshanetsky, A. Smirnov, and A. Zotov, “Characteristic classes of SL(N, ℂ)-bundles and quantum dynamical elliptic R-matrices,” J. Phys. A: Math. Theor., 46, 035201 (2013); arXiv:1208.5750v1 [math-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Grekov, I. Sechin, and A. Zotov, “Generalized model of interacting tops,” arXiv:1905.07820v2 [math-ph] (2019)

  15. I. A. Sechin and A. V. Zotov, “GLNM-valued quantum dynamical R-matrix constructed from a solution of the associative Yang-Baxter equation [in Russian],” Uspekhi Mat. Nauk, 74, No. 4(448), 189–190 (2019); arXiv:1905.08724v2 [math.QA] (2019).

    Article  MathSciNet  Google Scholar 

  16. J. Gibbons and T. Hermsen, “A generalization of the Calogero-Moser systems,” Phys. D, 11, 337–348 (1984)

    Article  MathSciNet  Google Scholar 

  17. S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero-Moser system,” Phys. Lett. A, 111, 101–103 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Levin, M. Olshanetsky, and A. Zotov, “Relativistic classical integrable tops and quantum R-matrices,” JHEP, 1407, 012 (2014); arXiv:1405.7523v3 [hep-th] (2014)

    Article  ADS  Google Scholar 

  19. G. Aminov, S. Arthamonov, A. Smirnov, and A. Zotov, “Rational top and its classical r-matrix,” J. Phys. A: Math. Theor., 47, 305207 (2014); arXiv:1402.3189v3 [hepth] (2014)

    Article  MathSciNet  Google Scholar 

  20. T. Krasnov and A. Zotov, “Trigonometric integrable tops from solutions of associative Yang-Baxter equation,” Ann. Henri Poincaré, 20, 2671–2697 (2019); arXiv:1812.04209v3 [math-ph] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. E. Arutyunov and S. A. Frolov, “On Hamiltonian structure of the spin Ruijsenaars-Schneider model,” J. Phys. A: Math. Gen., 31, 4203–4216 (1998); arXiv:hep-th/9703119v2 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Reshetikhin, “Degenerately integrable systems,” J. Math. Sci. (N. Y.), 213, 769–785 (2016); arXiv:1509.00730v1 [math-ph] (2015).

    Article  MathSciNet  Google Scholar 

  23. L. Fehér, “Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone,” arXiv:1901.03558v1 [math-ph] (2019); “Poisson-Lie analogues of spin Sutherland models,” arXiv:1809.01529v2 [math-ph] (2018).

  24. O. Chalykh and M. Fairon, “On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system,” arXiv:1811.08727v2 [math-ph] (2018); M. Fairon, “Spin versions of the complex trigonometric Ruijsenaars-Schneider model from cyclic quivers,” arXiv:1811.08717v2 [math-ph] (2018).

  25. G. Arutyunov and E. Olivucci, “Hyperbolic spin Ruijsenaars-Schneider model from Poisson reduction,” arXiv:1906.02619v2 [hep-th] (2019).

  26. E. K. Sklyanin, “Some algebraic structures connected with the Yang-Baxter equation,” Funct. Anal. Appl., 16, 263–270 (1982).

    Article  MathSciNet  Google Scholar 

  27. A. Levin, M. Olshanetsky, and A. Zotov, “Noncommutative extensions of elliptic integrable Euler-Arnold tops and Painlevé VI equation,” J. Phys. A: Math. Theor., 49, 395202 (2016); arXiv:1603.06101v2 [math-ph] (2016).

    Article  Google Scholar 

  28. A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations,” Modern Phys. Lett. A, 32, 1750169 (2017); arXiv:1706.05601v3 [math-ph] (2017).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zotov.

Ethics declarations

Conflicts of interest. The author declares no conflicts of interest.

Additional information

This research is supported by a grant from the Russian Science Foundation (Project No. 19-11-00062).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 201, No. 2, pp. 175–192, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, A.V. Relativistic Interacting Integrable Elliptic Tops. Theor Math Phys 201, 1565–1580 (2019). https://doi.org/10.1134/S0040577919110035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919110035

Keywords

Navigation