Skip to main content
Log in

Approximate Formula for the Total Cross Section for a Moderately Small Eikonal Function

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the eikonal approximation of the total cross section for the scattering of two unpolarized particles and obtain an approximate formula in the case where the eikonal function χ(b) is moderately small, |χ(b)| ≲ 0.1. We show that the total cross section is given by a series of improper integrals of the Born amplitude AB. The advantage of this representation compared with standard eikonal formulas is that these integrals contain no rapidly oscillating Bessel functions. We prove two theorems that allow relating the large-b asymptotic behavior of χ(b) to analytic properties of the Born amplitude and give several examples of applying these theorems. To check the effectiveness of the main formula, we use it to calculate the total cross section numerically for a selection of specific expressions for AB, choosing only Born amplitudes that result in moderately small eikonal functions and lead to the correct asymptotic behavior of χ(b). The numerical calculations show that if only the first three nonzero terms in it are taken into account, this formula approximates the total cross section with a relative error of O(10−5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Molière, “Theorie der Streuung schneller geladener Teilchen I: Einzelstreuung am abgeschirmten Coulomb-Feld,” Z. Naturforsch. A, 2, 133–145 (1947); “Theorie der Streuung schneller geladener Teilchen II: Mehrfachund Vielfachstreuung,” Z. Naturforsch. A, 3, 78–97 (1948).

    Article  ADS  Google Scholar 

  2. R. J. Glauber, “High-energy collision theory,” in: Lectures in Theoretical Physics (University of Colorado, Boulder, 1958, W. E. Brittin and L. G. Dunham, eds.), Vol. 1, Interscience, New York (1959), pp. 315–414.

    Google Scholar 

  3. H. Cheng and T. T. Wu, “High-energy elastic scattering in quantum electrodynamics,” Phys. Rev. Lett., 22, 666–669 (1969); “Impact factor and exponentiation in high-energy scattering processes,” Phys. Rev., 186, 1611–1618 (1969).

    Article  ADS  Google Scholar 

  4. A. A. Logunov and A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory,” Nuovo Cimento, 29, 380–389 (1963).

    Article  MathSciNet  Google Scholar 

  5. P. D. B. Collins, An Introduction to Regge Theory and High Energy Physics, Cambridge Univ. Press, Cambridge (1977).

    Book  Google Scholar 

  6. S. K. Lucas, “Evaluating infinite integrals involving products of Bessel functions of arbitrary order,” J. Comput. Appl. Math., 64, 269–282 (1995).

    Article  MathSciNet  Google Scholar 

  7. J. Van Deun and R. Cools, “Integrating products of Bessel functions with an additional exponential or rational factor,” Comp. Phys. Commun., 178, 578–590 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. V. Kisselev, “Approximate formulas for moderately small eikonal amplitudes,” Theor. Math. Phys., 188, 1197–1209 (2016).

    Article  MathSciNet  Google Scholar 

  9. G. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, The Hypergeometric Function. Legendre Functions, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  10. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), U.S. Government Printing Office, Washington, D. C. (1964).

    MATH  Google Scholar 

  11. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge (1927).

    MATH  Google Scholar 

  12. F. G. Mehler, “Über die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper,” J. für die Reine und Angewandte Math., 1868, 134–150 (1868); “Notiz über die Dirichlet’schen Integralausdrücke für die Kugelfunktion P n(cos θ) und über eine analoge Integralform für die Zylinderfunktion J(x),” Math. Ann., 5, 141–144 (1872).

    Article  MathSciNet  Google Scholar 

  13. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc., Providence, R. I. (1975).

    MATH  Google Scholar 

  14. A. V. Kisselev, “Ramanujan’s master theorem and two formulas for zero-order Hankel transform,” arXiv: 1801.06390v1 [math.CA] (2018).

    Google Scholar 

  15. H. Bateman and A. Erdelyi, Higher Trancendental Functions, Vol. 2, Bessel Functions, Parabolic Cylinder Functions, Orthogonal Polynomial, McGraw-Hill, New York (1953).

    Google Scholar 

  16. C. L. Frenzen and R. Wong, “A note on asymptotic evaluation of some Hankel transforms,” Math. Comp., 45, 537–548 (1985).

    Article  MathSciNet  Google Scholar 

  17. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).

    MATH  Google Scholar 

  18. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions [in Russian], Nauka, Moscow (1983).

    MATH  Google Scholar 

  19. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963); English transl.: Tables of Integrals, Series, and Products, Acad. Press, San Diego, Calif. (2000).

    Google Scholar 

  20. H. Bateman and A. Erdélyi, Higher transcendental functions, Vol. 3, Elliptic and Modular Functions. Lame and Mathieu Functions, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kisselev.

Ethics declarations

Conflicts of interest. The author declares no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 201, No. 1, pp. 84–104, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisselev, A.V. Approximate Formula for the Total Cross Section for a Moderately Small Eikonal Function. Theor Math Phys 201, 1484–1502 (2019). https://doi.org/10.1134/S0040577919100064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919100064

Keywords

Navigation