Skip to main content
Log in

Least Squares Method: Application to Analysis of the Flavor Dependence of the QCD Relation Between Pole and Scheme Running Heavy Quark Masses

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the ordinary least squares method, which allows solving overdetermined systems of algebraic equations and estimating the error of the obtained solutions. As an important physical example, we determine the four-loop QCD coefficients in the dependence of the relation between poles and running heavy quarks masses on the number of light flavors. For this, we use the existing results of supercomputer calculations of the corresponding four-loop contributions with different fixed numbers of light flavors. We demonstrate the stability of the found solutions under changing the number of considered equations and unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Basuev and A. N. Vasil’ev, “Method of summing the perturbation series in scalar theories,” Theor. Math. Phys., 18, 129–135 (1974).

    Article  MathSciNet  Google Scholar 

  2. L. N. Lipatov, “Divergence of the perturbation-theory series and the quasi-classical theory,” Sov. Phys. JETP, 45, 216–223 (1977).

    ADS  MathSciNet  Google Scholar 

  3. C. Itzykson, G. Parisi, and J.-B. Zuber, “Asymptotic estimates in quantum electrodynamics,” Phys. Rev. D, 16, 996–1013 (1977).

    Article  ADS  Google Scholar 

  4. E. B. Bogomolny and V. A. Fateev, “Large order calculations in gauge theories,” Phys. Lett. B, 71, 93–96 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. I. Kazakov and D. V. Shirkov, “Asymptotic series of quantum field theory and their summation,” Fortsch. Phys., 28, 465–499 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. I. Zakharov, “Renormalons as a bridge between perturbative and nonperturbative physics,” Prog. Theor. Phys. Suppl., 131, 107–127 (1998); arXiv:hep-ph/9802416v1 (1998).

    Article  ADS  Google Scholar 

  7. M. Beneke, “Renormalons,” Phys. Rep., 317, 1–142 (1999); arXiv:hep-ph/9807443v2 (1998).

    Article  ADS  Google Scholar 

  8. M. Beneke and V. M. Braun, “Renormalons and power corrections,” in: At the Frontier of Particle Physics: Handbook of QCD (M. Shifman and B. Ioffe, eds.), Vol. 3, World Scientific, Singapore (2001), pp. 1719–1773; arXiv:hep-ph/0010208v1 (2000).

    Chapter  Google Scholar 

  9. A. L. Kataev, “Deep inelastic sum rules at the boundaries between perturbative and nonperturbative QCD,” Modern Phys. Lett. A, 20, 2007–2022 (2005); arXiv:hep-ph/0505230v2 (2005).

    Article  ADS  Google Scholar 

  10. I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, “Pole mass of the heavy quark: Perturbation theory and beyond,” Phys. Rev. D, 50, 2234–2246 (1994); arXiv:hep-ph/9402360v1 (1994).

    Article  ADS  Google Scholar 

  11. M. Beneke and V. M. Braun, “Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass, and the residual mass term,” Nucl. Phys. B, 426, 301–343 (1994); arXiv:hep-ph/9402364v2 (1994).

    Article  ADS  Google Scholar 

  12. R. Tarrach, “The pole mass in perturbative QCD,” Nucl. Phys. B, 183, 384–396 (1981).

    Article  ADS  Google Scholar 

  13. N. Gray, D. J. Broadhurst, W. Grafe, and K. Schilcher, “Three-loop relation of quark \(\overline {MS} \) and pole masses,” Z. Phys. C, 48, 673–679 (1990).

    Article  ADS  Google Scholar 

  14. L. V. Avdeev and M. Yu. Kalmykov, “Pole masses of quarks in dimensional reduction,” Nucl. Phys. B, 502, 419–435 (1997).

    Article  ADS  Google Scholar 

  15. J. Fleischer, F. Jegerlehner, O. V. Tarasov, and O. L. Veretin, “Two loop QCD corrections of themassive fermion propagator,” Nucl. Phys. B, 539, 671–690 (1999); Erratum, Nucl. Phys. B, 571, 511–512 (2000); arXiv:hep-ph/9803493v5 (1998).

    Article  ADS  Google Scholar 

  16. K. Melnikov and T. van Ritbergen, “The three-loop relation between the MS and the pole quark masses,” Phys. Lett. B, 482, 99–108 (2000).

    Article  ADS  Google Scholar 

  17. K. G. Chetyrkin and M. Steinhauser, “The relation between the MS and the on-shell quark mass at order \(\alpha _{\rm{s}}^{\rm{3}}\),” Nucl. Phys. B, 573, 617–651 (2000).

    Article  ADS  Google Scholar 

  18. V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, “‘Lomonosov’: Supercomputing at Moscow State University,” in: Contemporary High Performance Computing: From Petascale Toward Exascale (J. S. Vetter, ed.), CRC, Boca Raton, Fla. (2013), pp. 283–307.

    Google Scholar 

  19. P. Marquard, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “Quark mass relations to four-loop order in perturbative QCD,” Phys. Rev. Lett., 114, 142002 (2015); arXiv:1502.01030v2 [hep-ph] (2015).

    Article  ADS  Google Scholar 

  20. P. Marquard, A. V. Smirnov, V. A. Smirnov, M. Steinhauser, and D. Wellmann, “\(\overline {{\rm{MS}}} \)-on-shell quark mass relation up to four loops in QCD and a general SU(7V) gauge group,” Phys. Rev. D, 94, 074025 (2016); arXiv:1606.06754v2 [hep-ph] (2016).

    Article  ADS  Google Scholar 

  21. A. L. Kataev and V. S. Molokoedov, “On the flavour dependence of the \({\cal O}\left({\alpha _{\rm{s}}^{\rm{4}}} \right)\) correction to the relation between running and pole heavy quark masses,” Eur. Phys. J. Plus, 131, 271 (2016); arXiv:1511.06898v4 [hep-ph] (2015).

    Article  Google Scholar 

  22. A. L. Kataev and V. S. Molokoedov, “Multiloop contributions to the \(\overline {{\rm{MS}}} \)-on-shell mass relation for heavy quarks in QCD and charged leptons in QED and the asymptotic structure of the perturbative QCD series,” arXiv:1807.05406v2 [hep-ph] (2018).

  23. Yu. V. Linnik, Method of Least Squares and Principles of the Mathematical Theory of the Development of Observations [in Russian], Fizmatlit, Moscow (1962); English transl. prev. ed.: Method of Least Squares and Principles of the Theory of Observations, Pergamon, New York (1961).

    Google Scholar 

  24. D. J. Gross and F. Wilczek, “Ultraviolet behavior of non-Abelian gauge theories,” Phys. Rev. Lett., 30, 1343–1345 (1973).

    Article  ADS  Google Scholar 

  25. H. D. Politzer, “Reliable perturbative results for strong interactions?” Phys. Rev. Lett., 30, 1346–1349 (1973).

    Article  ADS  Google Scholar 

  26. P. M. Stevenson, “Optimized perturbation theory,” Phys. Rev. D, 23, 2916–2944 (1981).

    Article  ADS  Google Scholar 

  27. R. Lee, P. Marquard, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “Four-loop corrections with two closed fermion loops to fermion self energies and the lepton anomalous magnetic moment,” JHEP, 1303, 162 (2013).

    Article  ADS  Google Scholar 

  28. P. Ball, M. Beneke, and V. M. Braun, “Resummation of (β 0 α s)n corrections in QCD: Techniques and applications to the tau hadronic width and the heavy quark pole mass,” Nucl. Phys. B, 452, 563–625 (1995); arXiv:hep-ph/9502300v1 (1995).

    Article  ADS  Google Scholar 

  29. L. Sachs, Applied Statistics: A Handbook of Techniques, Springer, New York (1984).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Kataev or V. S. Molokoedov.

Additional information

Conflict of interest

The authors declare no conflicts of interest.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 3, pp. 522–531, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataev, A.L., Molokoedov, V.S. Least Squares Method: Application to Analysis of the Flavor Dependence of the QCD Relation Between Pole and Scheme Running Heavy Quark Masses. Theor Math Phys 200, 1374–1382 (2019). https://doi.org/10.1134/S0040577919090101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919090101

Keywords

Navigation