Skip to main content
Log in

Holographic Renormalization Group Flows

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We briefly review recent applications of holographic renormalization group flow equations in a hot and dense quark-gluon plasma (QGP). We especially focus on presenting a few examples typically used in the holographic description of the QGP. We study the influence of the chemical potential on the holographic β-function in these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, Gauge/String Duality, Hot QCD, and Heavy Ion Collisions, Cambridge Univ. Press, Cambridge (2014); arXiv:1101.0618v2 [hep-th] (2011).

    Book  Google Scholar 

  2. I. Ya. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp., 57, 527–555 (2014).

    Article  ADS  Google Scholar 

  3. O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, “Heavy ions and string theory,” Prog. Part. Nucl. Phys., 75, 86–132 (2014); arXiv:1304.7794v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  4. I. Aref’eva, “Holography for Heavy Ions Collisions at LHC and NICA,” EPJ Web Conf., 164, 01014 (2017); arXiv:1612.08928v1 [hep-th] (2016).

    Article  Google Scholar 

  5. I. Aref’eva, “Holography for heavy-ion collisions at LHC and NICA: Results of the last two years,” EPJ Web Conf., 191, 05010 (2018).

    Article  Google Scholar 

  6. I. Aref’eva, K. Rannu, and P. Slepov, “Orientation dependence of confinement-deconfinement phase transition in anisotropic media,” Phys. Lett. B, 792, 470–475 (2019); arXiv:1808.05596v3 [hep-th] (2018).

    Article  ADS  Google Scholar 

  7. D. Z. Freedman, S. S. Gubser, K. Pilch, and N. P. Warner, “Renormalization group flows from holography supersymmetry and a c-theorem,” Adv. Theor. Math. Phys., 3, 363–417 (1999); arXiv:hep-th/9904017v3 (1999).

    Article  MathSciNet  Google Scholar 

  8. J. de Boer, E. P. Verlinde, and H. L. Verlinde, “On the holographic renormalization group,” JHEP, 0008, 003 (2000); arXiv:hep-th/9912012v1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. de Boer, “The holographic renormalization group,” Fortsch. Phys., 49, 2001 (339–358); arXiv:hep-th/0101026v1 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Heemskerk and J. Polchinski, “Holographic and Wilsonian renormalization groups,” JHEP, 1106, 031 (2011); arXiv:1010.1264v2 [hep-th] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Kiritsis, F. Nitti, and L. S. Pimenta, “Exotic RG flows from holography,” Fortsch. Phys., 65, 1600120 (2017); arXiv:1611.05493v2 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Aref’eva and K. Rannu, “Holographic anisotropic background with confinement-deconfinement phase transition,” JHEP, 1805, 206 (2018); arXiv:1802.05652v3 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Kiritsis, W. Li, and F. Nitti, “Holographic RG flow and the quantum effective action,” Fortsch. Phys., 62, 389–454 (2014); arXiv:1401.0888v2 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. A. Chamblin and H. S. Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B, 562, 133–157 (1999); arXiv: hep-th/9903225v3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Y. Aref’eva, A. A. Golubtsova, and G. Policastro, “Exact holographic RG flows and the A 1 × A 1 Toda chain,” JHEP, 1905, 117 (2019); arXiv:1803.06764v2 [hep-th] (2018).

    Article  ADS  Google Scholar 

  16. U. Gursoy, M. Järvinen, and G. Policastro, “Late time behavior of non-conformal plasmas,” JHEP, 1601, 134 (2016); arXiv:1507.08628v1 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  17. K. C. K. Chan, J. H. Horne, and R. B. Mann, “Charged dilaton black holes with unusual asymptotics,” Nucl. Phys. B, 447, 441–464 (1995); arXiv:gr-qc/9502042v1 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Charmousis, B. Goutéraux, and J. Soda, “Einstein-Maxwell-Dilaton theories with a Liouville potential,” Phys. Rev. D, 80, 024028 (2009); arXiv:0905.3337v3 [gr-qc] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Gouteraux and E. Kiritsis, “Generalized holographic quantum criticality at finite density,” JHEP, 1112, 036 (2011); arXiv:1107.2116v4 [hep-th] (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Additional information

Conflict of interest

The author declares no conflicts of interest.

This research was supported by the Russian Foundation for Basic Research (Grant No. 18-02-40069).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 3, pp. 452–464, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y. Holographic Renormalization Group Flows. Theor Math Phys 200, 1313–1323 (2019). https://doi.org/10.1134/S0040577919090058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919090058

Keywords

Navigation