Skip to main content
Log in

Statistical Nature of Skyrme-Faddeev Models in 2+1 Dimensions and Normalizable Fermions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Skyrme-Faddeev model has planar soliton solutions with the target space ℂPN. An Abelian Chern-Simons term (the Hopf term) in the Lagrangian of the model plays a crucial role for the statistical properties of the solutions. Because П3(ℂP1) = ℤ, the term becomes an integer for N = 1. On the other hand, for N > 1, it becomes perturbative because П3(ℂPN) is trivial. The prefactor Θ of the Hopf term is not quantized, and its value depends on the physical system. We study the spectral flow of normalizable fermions coupled with the baby-Skyrme model (ℂPN Skyrme-Faddeev model). We discuss whether the statistical nature of solitons can be explained using their constituents, i.e., quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Ferreira and P. Klimas, “Exact vortex solutions in a CP N Skyrme-Faddeev type model,” JHEP, 1010, 008 (2010); arXiv:1007.1667v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  2. Y. Amari, P. Klimas, N. Sawado, and Y. Tamaki, “Potentials and the vortex solutions in the CP N Skyrme-Faddeev model,” Phys. Rev. D, 92, 045007 (2015); arXiv:1504.02848v1 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. B. M. A. G. Piette, B. J. Schroers, and W. J. Zakrzewski, “Multi-solitons in a two-dimensional Skyrme model,” Z. Phys. C, 65, 165–174 (1995); arXiv:hep-th/9406160v1 (1994).

    Article  ADS  Google Scholar 

  4. F. Wilczek and A. Zee, “Linking numbers, spin, and statistics of solitons,” Phys. Rev. Lett., 51, 2250–2252 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. G. Abanov, “Hopf term induced by fermions,” Phys. Lett. B, 492, 321–323 (2000); arXiv:hep-th/0005150v2 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. G. Abanov and P. B. Wiegmann, “On the correspondence between fermionic number and statistics of solitons,” JHEP, 0110, 030 (2001); arXiv:hep-th/0105213v1 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. O. Bar, M. Imboden, and U. J. Wiese, “Pions versus magnons: From QCD to antiferromagnets and quantum Hall ferromagnets,” Nucl. Phys. B, 686, 347–376 (2004); arXiv:cond-mat/0310353v1 (2003).

    Article  ADS  Google Scholar 

  8. T. Jaroszewicz, “Induced topological terms, spin, and statistics in (2+1)-dimensions,” Phys. Lett. B, 159, 299–302 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. F. Atiyah and I. M. Singer, “The index of elliptic operators: 1,” Ann. Math.Ser.2, 87, 484–530 (1968).

    Article  MathSciNet  Google Scholar 

  10. S. Kahana and G. Ripka, “Baryon density of quarks coupled to a chiral field,” Nucl. Phys. A, 429, 462–476 (1984).

    Article  ADS  Google Scholar 

  11. A. Acus, E. Norvaisas, and Ya. Shnir, “Baby Skyrmions stabilized by canonical quantization,” Phys. Lett. B, 682, 155–162 (2009); arXiv:0909.5281v1 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  12. C.-C. Liu, P. Goswami, and Q. Si, “Skyrmion defects of antiferromagnet and competing singlet orders of a Kondo-Heisenberg model on honeycomb lattice,” Phys. Rev. B, 96, 125101 (2017); arXiv:1704.07818v2 [condmat.str-el] (2017).

    Article  ADS  Google Scholar 

  13. E. Witten, “Global aspects of current algebra,” Nucl. Phys. B, 223, 422–432 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Jackiw and P. Rossi, “Zero modes of the vortex-fermion system,” Nucl. Phys. B, 190, 681–691 (1981).

    Article  ADS  Google Scholar 

  15. D. I. Diakonov, V. Yu. Petrov, and P. V. Pobylitsa, “A chiral theory of nucleons,” Nucl. Phys. B, 306, 809–848 (1988).

    Article  ADS  Google Scholar 

  16. R. Alkofer and H. Reinhardt, Chiral Quark Dynamics (Lect. Notes Phys. Monogr., Vol. 33), Springer, Berlin (1995).

    Book  Google Scholar 

  17. A. D’Adda and A. C. Davis, “Chiral symmetry restoration in the CP(n−1) in two-dimensions model with fermions,” Phys. Lett. B, 101, 85–88 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. D’Adda, M. Luscher, and P. Di Vecchia, “A 1/n expandable series of nonlinear σ models with instantons,” Nucl. Phys. B, 146, 63–76 (1978).

    Article  ADS  Google Scholar 

  19. A. E. Kudryavtsev, B. M. A. G. Piette, and W. J. Zakrzewski, “Skyrmions and domain walls in (2+1)-dimensions,” Nonlinearity, 11, 783–795 (1998); arXiv:hep-th/9709187v1 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Amari, P. Klimas, and N. Sawado, “Collective coordinate quantization, spin statistics of the solitons in the ℂP N Skyrme-Faddeev model,” Phys. Rev. D, 94, 025032 (2016); arXiv:1604.06125v2 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

One of the authors (N. S.) thanks the conference organizers of MQFT-2018 for the kind accommodation and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Amari or N. Sawado.

Additional information

Conflicts of interest

The authors declare no conflicts of interest.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 3, pp. 381–398, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amari, Y., Iida, M. & Sawado, N. Statistical Nature of Skyrme-Faddeev Models in 2+1 Dimensions and Normalizable Fermions. Theor Math Phys 200, 1253–1268 (2019). https://doi.org/10.1134/S0040577919090010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919090010

Keywords

Navigation