Abstract
In the superalgebraic representation of spinors using Grassmann densities and the corresponding derivatives, we introduce a generalization of Dirac conjugation, and this generalization yields Lorentz-covariant transformations of conjugate spinors. The signature of the generalized gamma matrices, the number of them, and the decomposition of second quantization with respect to momenta are given by a variant of the generalized Dirac conjugation and by the requirement that the algebra of canonical anticommutation relations should be preserved under transformations of spinors and conjugate spinors.
Similar content being viewed by others
References
P. Lounesto, Clifford Algebras and Spinors (London Math. Soc. Lect. Note Ser., Vol. 286), Cambridge Univ. Press, Cambridge (2001).
V. L. Figueiredo, E. C. d. Oliveira, and W. A. Rodrigues, “Covariant, algebraic, and operator spinors,” Internat. J. Theoret. Phys., 29, 371–395 (1990).
W. A. Rodrigues and E. C. d. Oliveira, “The hidden geometrical nature of spinors,” in: The Many Faces o. Maxwell, Dirac, and Einstein Equations (Lect Notes Phys., Vol. 922, W. A. Rodrigues Jr. and E. C. d. Oliveira, eds.), Springer, Cham (2016), pp. 69–105.
E. Cartan, La Theorie des Spineurs, Mercier, Paris (1938).
R. Brauer and H. Weyl, “Spinors in n dimensions,” Amer. J. Math., 57, 425–449 (1935).
J. A. Schouten, “On the geometry of spin spaces I,” Proc. Kon. Ned. Akad. Wetensch., 52, 597–609 (1949); “On the geometry of spin spaces II,”, 52, 687–695 (1949); “On the geometry of spin spaces III,”, 52, 938–948 (1949); “On the geometry of spin spaces IV,”, 53, 261–272 (1950).
C. Chevalley, Algebraic Theory of Spinors and Clifford Algebras: Collected Works, Vol. 2, Springer, Berlin (1997).
A. Sommerfeld, Atombau und Spektrallinien, Vol. 2, F. Vieweg und Sohn, Braunschweig (1951).
P. K. Rashevskii, “Theory of spinors,” Uspekhi Mat. Nauk, 10, No. 2(64), 3–110 (1955).
D. S. Shirokov, “Clifford algebras and their applications to Lie groups and spinors,” in: Geometry, Integrability, and Quantization (Varna, Bulgaria, 2–7 June 2017, I. M. Mladenov and A. Yoshioka, eds.), Vol. 19, Avangard Prima, Sofia (2018), pp. 11–53.
P. Lounesto, “Clifford algebras and Hestenes spinors,” Found. Phys., 23, 1203–1237 (1993).
J. H. Da Silva and R. d. Rocha, “Unfolding physics from the algebraic classification of spinor fields,” Phys. Lett. B, 718, 1519–1523 (2013); arXiv:1212.2406v1 [hep-th] (2012).
M. Pavšič, “Space inversion of spinors revisited: A possible explanation of chiral behavior in weak interactions,” Phys. Lett. B, 692, 212–217 (2010); arXiv:1005.1500v2 [hep-th] (2010).
V. V. Monakhov, “Superalgebraic representation of Dirac matrices,” Theor. Math. Phys., 186, 70–82 (2016).
V. V. Monakhov, “Dirac matrices as elements of superalgebraic matrix algebra,” Bull. Russ. Acad. Sci.: Phys., 80, 985–988 (2016).
V. V. Monakhov, “Superalgebraic structure of Lorentz transformations,” J. Phys.: Conf. Ser., 1051, 012023 (2018).
V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform,” Commun. Pure Appl. Math., 14, 187–214 (1961).
H. P. Thienel, “A generalization of the Bargmann-Fock representation to supersymmetry,” J. Phys. A: Math. Gen., 29, 6983–6989 (1996); arXiv:hep-th/9511155v1 (1995).
F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], Moscow State Univ. Press, Moscow (1983).
F. A. Berezin, The Method of Second Quantization [in Russian], Nauka, Moscow (1965); English transl., Acad. Press, New York (1966).
V. S. Vladimirov and I. V. Volovich, “Differential calculus,” Theor. Math. Phys., 59, 317–335 (1984).
V. S. Vladimirov and I. V. Volovich, “Superanalysis: II. Integral calculus,” Theor. Math. Phys., 60, 743–765 (1984).
I. A. Satikov and V. I. Strazhev, Theor. Math. Phys., 73, 1028–1034 (1987).
J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, Mcgraw-Hill, New York (1965).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 1, pp. 118–136, July, 2019.
Rights and permissions
About this article
Cite this article
Monakhov, V.V. Generalization of Dirac Conjugation in the Superalgebraic Theory of Spinors. Theor Math Phys 200, 1026–1042 (2019). https://doi.org/10.1134/S0040577919070079
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0040577919070079