Skip to main content
Log in

Generalization of Dirac Conjugation in the Superalgebraic Theory of Spinors

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the superalgebraic representation of spinors using Grassmann densities and the corresponding derivatives, we introduce a generalization of Dirac conjugation, and this generalization yields Lorentz-covariant transformations of conjugate spinors. The signature of the generalized gamma matrices, the number of them, and the decomposition of second quantization with respect to momenta are given by a variant of the generalized Dirac conjugation and by the requirement that the algebra of canonical anticommutation relations should be preserved under transformations of spinors and conjugate spinors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lounesto, Clifford Algebras and Spinors (London Math. Soc. Lect. Note Ser., Vol. 286), Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  2. V. L. Figueiredo, E. C. d. Oliveira, and W. A. Rodrigues, “Covariant, algebraic, and operator spinors,” Internat. J. Theoret. Phys., 29, 371–395 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. W. A. Rodrigues and E. C. d. Oliveira, “The hidden geometrical nature of spinors,” in: The Many Faces o. Maxwell, Dirac, and Einstein Equations (Lect Notes Phys., Vol. 922, W. A. Rodrigues Jr. and E. C. d. Oliveira, eds.), Springer, Cham (2016), pp. 69–105.

    Article  Google Scholar 

  4. E. Cartan, La Theorie des Spineurs, Mercier, Paris (1938).

    MATH  Google Scholar 

  5. R. Brauer and H. Weyl, “Spinors in n dimensions,” Amer. J. Math., 57, 425–449 (1935).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. A. Schouten, “On the geometry of spin spaces I,” Proc. Kon. Ned. Akad. Wetensch., 52, 597–609 (1949); “On the geometry of spin spaces II,”, 52, 687–695 (1949); “On the geometry of spin spaces III,”, 52, 938–948 (1949); “On the geometry of spin spaces IV,”, 53, 261–272 (1950).

    MathSciNet  MATH  Google Scholar 

  7. C. Chevalley, Algebraic Theory of Spinors and Clifford Algebras: Collected Works, Vol. 2, Springer, Berlin (1997).

  8. A. Sommerfeld, Atombau und Spektrallinien, Vol. 2, F. Vieweg und Sohn, Braunschweig (1951).

  9. P. K. Rashevskii, “Theory of spinors,” Uspekhi Mat. Nauk, 10, No. 2(64), 3–110 (1955).

    MathSciNet  Google Scholar 

  10. D. S. Shirokov, “Clifford algebras and their applications to Lie groups and spinors,” in: Geometry, Integrability, and Quantization (Varna, Bulgaria, 2–7 June 2017, I. M. Mladenov and A. Yoshioka, eds.), Vol. 19, Avangard Prima, Sofia (2018), pp. 11–53.

    Google Scholar 

  11. P. Lounesto, “Clifford algebras and Hestenes spinors,” Found. Phys., 23, 1203–1237 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. H. Da Silva and R. d. Rocha, “Unfolding physics from the algebraic classification of spinor fields,” Phys. Lett. B, 718, 1519–1523 (2013); arXiv:1212.2406v1 [hep-th] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Pavšič, “Space inversion of spinors revisited: A possible explanation of chiral behavior in weak interactions,” Phys. Lett. B, 692, 212–217 (2010); arXiv:1005.1500v2 [hep-th] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. V. Monakhov, “Superalgebraic representation of Dirac matrices,” Theor. Math. Phys., 186, 70–82 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. V. Monakhov, “Dirac matrices as elements of superalgebraic matrix algebra,” Bull. Russ. Acad. Sci.: Phys., 80, 985–988 (2016).

    Article  Google Scholar 

  16. V. V. Monakhov, “Superalgebraic structure of Lorentz transformations,” J. Phys.: Conf. Ser., 1051, 012023 (2018).

    Google Scholar 

  17. V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform,” Commun. Pure Appl. Math., 14, 187–214 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. P. Thienel, “A generalization of the Bargmann-Fock representation to supersymmetry,” J. Phys. A: Math. Gen., 29, 6983–6989 (1996); arXiv:hep-th/9511155v1 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], Moscow State Univ. Press, Moscow (1983).

    Google Scholar 

  20. F. A. Berezin, The Method of Second Quantization [in Russian], Nauka, Moscow (1965); English transl., Acad. Press, New York (1966).

    MATH  Google Scholar 

  21. V. S. Vladimirov and I. V. Volovich, “Differential calculus,” Theor. Math. Phys., 59, 317–335 (1984).

    Article  MATH  Google Scholar 

  22. V. S. Vladimirov and I. V. Volovich, “Superanalysis: II. Integral calculus,” Theor. Math. Phys., 60, 743–765 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. A. Satikov and V. I. Strazhev, Theor. Math. Phys., 73, 1028–1034 (1987).

    Article  Google Scholar 

  24. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, Mcgraw-Hill, New York (1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Monakhov.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 1, pp. 118–136, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monakhov, V.V. Generalization of Dirac Conjugation in the Superalgebraic Theory of Spinors. Theor Math Phys 200, 1026–1042 (2019). https://doi.org/10.1134/S0040577919070079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919070079

Keywords

Navigation